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Preface

This Student Solutions Manual and Study Guide for Numerical Analysis, Ninth Edition, by Burden and Faires
contains representative exercises that have been worked out in detail for all the techniques discussed in the
book. Particular attention was paid to ensure that the exercises solved in the Guide are those requiring insight
into the theory and methods discussed in the book. Although the answers to the odd exercises are also in the
back of the book, the results listed in this Study Guide generally go well beyond those in the book.

For this edition we have added a number of exercises to the text that involve the use of a computer algebra
system (CAS). We chose Maple as our standard CAS, because their NumericalAnalysis package parallels
the algorithms in this book. However, any of the common computer algebra systems, such Mathematica,
MATLAB, and the public domain system, Sage, can be used with satisfaction. In our recent teaching of the
course we have found that students understood the concepts better when they worked through the algorithms
step-by-step, but let a computer algebra system do the tedious computation.

It has been our practice to include structured algorithms in our Numerical Analysis book for all the
techniques discussed in the text. The algorithms are given in a form that can be coded in any appropriate
programming language, by students with even a minimal amount of programming expertise.

At the website for the book,

http://www.math.ysu.edu/~faires/Numerical-Analysis/

you will find code for all the algorithms written in the programming languages FORTRAN, Pascal, C, Java.
You will also find code in the form of worksheets for the computer algebra systems, Maple, MATLAB, and
Mathematica. For this edition we have rewritten all the Maple programs to reflect the NumericalAnalysis
package and the numerous changes that have been made to this system.

The website contains additional information about the book, and will be updated regularly to reflect any
modifications that might be made. For example, we will place there any errata we are aware of, as well as
responses to questions from users of the book concerning interpretations of the exercises and appropriate
applications of the techniques.

We hope our Guide helps you with your study of Numerical Analysis. If you have any suggestions for
improvements that can be incorporated into future editions of the book or the supplements, we would be
most grateful to receive your comments. We can be most easily contacted by electronic mail at the addresses
listed below.

Youngstown State University Richard L. Burden
burden @math.ysu.edu

August 14, 2010 J. Douglas Faires
faires @math.ysu.edu

vii
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Mathematical Preliminaries

Exercise Set 1.1, page 14

1. d. Show that the equation 2 — (In x)® = 0 has at least one solution in the interval [4, 5].

SOLUTION: It is not possible to algebraically solve for the solution x, but this is not required in the
problem, we must show only that a solution exists. Let

f(z) =2 — (Inz)* =2 — exp(z(In(lnz))).

Since f is continuous on [4, 5] with f(4) ~ 0.3066 and f(5) ~ —5.799, the Intermediate Value
Theorem 1.11 implies that a number = must exist in (4,5) with 0 = f(z) = z — (Inx)”.

2. c. Find intervals that contain a solution to the equation 2% — 222 — 4z 4+ 3 = 0.
SOLUTION: Let f(x) = 23 — 22? — 42 + 3. The critical points of f occur when

0= f'(z) =322 -4z — 4= 3z + 2)(z — 2);

that is, when x = —% and z = 2. Relative maximum and minimum values of f can occur only at

these values. There are at most three solutions to f(x) = 0, because f(x) is a polynomial of degree
three. Since f(—2) = —5and f (—2) ~ 4.48; f(0) = 3 and f(1) = —2;and f(2) = —5 and
f(4) = 19; solutions lie in the intervals [—2, —2/3], [0, 1], and [2, 4].

4. a.Find Jmax |f(x)] when f(z) = (2 — e” + 2x) /3.

SOLUTION: First note that f/(z) = (—e® + 2) /3, so the only critical point of f occurs at z = In 2,
which lies in the interval [0, 1]. The maximum for | f(x)| must consequently be

max{[f(0)[,[f(In2)[,[f(1)|} = max{1/3,(2In2)/3,(4 —€)/3} = (2In2)/3.

5. Use the Intermediate Value Theorem 1.11 and Rolle’s Theorem 1.7 to show that the graph of
f(x) = 23 + 2z + k crosses the x-axis exactly once, regardless of the value of the constant k.

SOLUTION: For z < 0,we have f(x) < 2z + k < 0, provided that x < —%k. Similarly, for z > 0,
we have f(x) > 2z + k > 0, provided that = > —%k. By Theorem 1.11, there exists a number ¢ with
fle)y=0.

If f(c) =0and f(c¢') = 0 for some ¢’ # ¢, then by Theorem 1.7, there exists a number p between ¢
and ¢/ with f’(p) = 0. However, f'(x) = 322 + 2 > 0 for all z. This gives a contradiction to the
statement that f(¢) = 0 and f(c") = 0 for some ¢’ # c¢. Hence there is exactly one number ¢ with

fe)=0.



Exercise Set 1.1

9. Find the second Taylor polynomial for f(z) = e* cosx about g = 0, and:

a. Use P»(0.5) to approximate f(0.5), find an upper bound for | f(0.5) — P5(0.5)|, and compare this
to the actual error.

b. Find a bound for the error | f(x) — P2 (z)|, for = in [0, 1].

1 1
c. Approximate / f(z) dzx using / Py (z) dx.
0 0

d. Find an upper bound for the error in part (c).
SOLUTION: Since

() =e*(cosz —sinx), f"(x)=—2e"(sinz), and f"(z)= —2e"(sinz + cosx),
we have f(0) =1, f/(0) = 1, and f”(0) = 0. So

—_ 908 (<
Py(z) =14z and Ry(z)= 2e (Sln;;—l—cosg)xz%'

a. We have P»(0.5) =14 0.5 = 1.5and

—2€8(sin € + cos€) o 1 5

0.5) — P,(0.5)] < 0.5)%| < =(0.5 £(si :
£(0.5) = P (0.5)[ < max a0 (0.5)7) = 3(0.5)7 max_ [e(sing + cos )|
To maximize this quantity on [0, 0.5], first note that D,e” (sinx + cosx) = 2e” cosx > 0, for all z in
[0, 0.5]. This implies that the maximum and minimum values of e” (sin z + cos ) on [0, 0.5] occur at
the endpoints of the interval, and

e(sin0 + cos0) = 1 < €%°(sin 0.5 + cos 0.5) ~ 2.24.

Hence

|£(0.5) — Py(0.5)] < =(0.5)3(2.24) ~ 0.0932.

wl

b. A similar analysis to that in part (a) gives, for all z € [0, 1],

|[f(z) — Pa(z)] < %(1.0)3el(sin1 + cos1) =~ 1.252.

! ! 221" 3
/f(x)d:tm/ 1+xdw=[m+—] =_.
0 0 2]y 2

d. From part (b),

1 1 1
1
/ |Re(z)| do < / gel(cos1 +sin1)z® do = / 1.2522% dx = 0.313.
0 0 0
Since

1 1
r 1
/ e’ cosx dr = [%(cosx—i—sin:v)] = g(cosl +sinl) — 5(1 +0) ~ 1.378,
0 0

the actual error is |1.378 — 1.5] ~ 0.12.
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14.

16.

Use the error term of a Taylor polynomial to estimate the error involved in using sinx ~ x to
approximate sin 1°,

SOLUTION: First we need to convert the degree measure for the sine function to radians. We have
180° = 7 radians, so 1° = 155 radians. Since f(z) = sinz, f'(x) = cosx, f”(r) = —sinz, and
f"(x) = — cosx, we have f(0) =0, f'(0) =1, and f”(0) = 0. The approximation sinz = x is

given by f(z) = Py(x) and Ry(z) = —COB—S!EQ:?’. If we use the bound | cos¢] < 1, then

sin (155) 1o = 72 (55) | = | =57 (55) | < 380 107"

180 180 3! 180

— Lox[2 G T
Let f(z) = e*/?sin .

a. Use Maple to determine the third Maclaurin polynomial Ps(z).
b. Find ¥ (z) and bound the error | f(z) — Ps(x)| on [0, 1].
SOLUTION: a. Define f(x) by
o= e (3)-sin (3)

f=ePsin (%x)

Then find the first three terms of the Taylor series with
g = taylor(f,x = 0,4)

g = %x—i— %ZC2 + %xs + 0 (:104)
Extract the third Maclaurin polynomial with
p3 := convert(g, polynom)
145 23 4
p3 = 37 + R + 61z’

b. Determine the fourth derivative.

f4:=diff(f,,x, x,x)

119 1 5 1
— (1/22) gin [ = 2 e(1/22) z
f4: 1296 ¢ 51n<3$>+54e cos<3x)

Find the fifth derivative.
[5 = diff(f4,z)

199 1 61 1
f5:= ——25926(1/29”) sin <§x) + me(l/zm) cos <§:1:>

See if the fourth derivative has any critical points in [0, 1].

p:= fsolve(f5=0,2,0..1)
p = .6047389076

The extreme values of the fourth derivative will occur at z = 0, 1, or p.
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cl := evalf(subs(x = p, f4))

cl :=.09787176213
2 := evalf(subs(x = 0, f4))

c2 :=.09259259259
3 = evalf(subs(z = 1, f4))

c3 :=.09472344463

The maximum absolute value of f(*)(z) is ¢; and the error is given by

error == c1/24
error := .004077990089

24. In Example 3 it is stated that 2 we have | sin | < |z|. Use the following to verify this statement.
a. Show that for all > 0 the function f(z) = 2 — sin« is non-decreasing, which implies that
sin z < x with equality only when z = 0.

b. Use the fact that the sine function is odd to reach the conclusion.

SOLUTION: First observe that for f(x) = x — sinz we have f/'(z) = 1 — cosx > 0, because
—1 < cosz < 1 for all values of x. Also, the statement clearly holds when |z| > 7, because
|sinz| < 1.

a. The observation implies that f(z) is non-decreasing for all values of z, and in particular that
f(z) > f(0) = 0 when & > 0. Hence for z > 0, we have z > sin z;, and when 0 < 2 < 7, we have
|sinz| =sina < x = |z|.

b. When —m < 2 < 0, we have m > —x > 0. Since sin « is an odd function, the fact (from part (a))
that sin(—xz) < (—z) implies that [sinz| = —sinz < —z = |z|.

As a consequence, for all real numbers  we have | sin z| < |z|.
28. Suppose f € Cla, b], and that =1 and x5 are in [a, b].
a. Show that a number £ exists between x1 and x5 with

Jla) + () 1

1
f&) = 5 = §f(5171) + §f(332)-
b. Suppose that ¢; and co are positive constants. Show that a number £ exists between z1 and zo
with
c1f(z1) +eaf(z2
fl = Az eallzz)
c1 + C2

c. Give an example to show that the result in part (b) does not necessarily hold when ¢; and c»
have opposite signs with ¢; # —co.

SOLUTION:

a. The number

1
§(f(f€1) + f(x2))
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is the average of f(x1) and f(x2), so it lies between these two values of f. By the Intermediate Value
Theorem 1.11 there exist a number £ between x; and xo with

7(6) = 5 (7 + F(w2)) = & (o) + 3 ().

b. Let m = min{ f(z1), f(z2)} and M = max{ f(z1), f(z2)}. Thenm < f(z1) < M and
m < f(z2) < M, so

eem < e f(r1) <eaM  and  com < cof(x2) < coM.

Thus
(c1+ca)m < cif(xr) + caf(xe) < (c1 + c2)M

and

m < cif(xr) + cof(x2) < M.
C1 —|— Co
By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x; and x2, there exists

a number ¢ between x1 and x2 for which

£(6) = cif(z1) + C2f($2)'

Cl—|—CQ

c.Let f(x) =22+ 1,21 =0,22 = 1,¢1 = 2,and ¢ = —1. Then f(x) > 0 for all values of x, but

af(z) +eaf(e) _20)-12) _
c1+c2 2-1 '

Exercise Set 1.2, page 28

2. c. Find the largest interval in which p* must lie to approximate v/2 with relative error at most 10~
SOLUTION: We need

[ — V2]
V2]

< 10_4, SO

P -V V2107

that is,
—V2x1074 <p* —vV2<V2x 1074

This implies that p* must be in the interval (v/2(0.9999), v/2(1.0001)) .

5. e. Use three-digit rounding arithmetic to compute

and determine the absolute and relative errors.

SOLUTION: Using three-digit rounding arithmetic gives % = 0.929, g = 0.857,and e = 2.72. So

% — g =0.0720 and 2e— 5.4 =5.44 — 5.40 = 0.0400.



12.

Exercise Set 1.2

Hence . 5
a7 0.0720

% —5.4  0.0400

The correct value is approximately 1.954, so the absolute and relative errors to three digits are

1.80 — 1.954|

1.80 — 1.954| = 0.154 and i

= 0.0788,

respectively.

. e. Repeat Exercise 5(e) using three-digit chopping arithmetic.

SOLUTION: Using three-digit chopping arithmetic gives % =0.928, % = 0.857,and e = 2.71. So

1
1—2 — g =0.0710 and 2e—5.4=5.42—5.40 = 0.0200.
Hence 5 6
7 _ 0.0710
2e —5.4  0.0200
The correct value is approximately 1.954, so the absolute and relative errors to three digits are

= 3.55.

13.55 — 1.954|

3.55 — 1.954| = 1.60, and o

= 0.817,

respectively. The results in Exercise 5(e) were considerably better.

. a. Use the first three terms of the Maclaurin series for the arctangent function to approximate

7 = 4 [arctan  + arctan ], and determine the absolute and relative errors.

SOLUTION: Let P(x) = x — 52° + £2°. Then P (3) = 0.464583 and P (3) = 0.3218107, so
1 1
m =4 |arctan 3 + arctan 3 ~ 3.145576.

The absolute and relative errors are, respectively,

| — 3.145576)

~ 1.268 x 1075.
||

| — 3.145576] ~ 3.983 x 10~® and

Let

a. Find lim, o f(x).
b. Use three-digit rounding arithmetic to evaluate f(0.1).
¢. Replace each exponential function with its third Maclaurin polynomial and repeat part (b).

SOLUTION: a. Since lim, ,ge* —e ™ =1—1=0andlim,_,gz = 0, we can use L'Hospitals
Rule to give
. et —e" . ef4e" 1+1
lim ——— = lim = =
x—0 x z—0 1 1

2.
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15.

16.

b. With three-digit rounding arithmetic we have e®'%° = 1.11 and e =190 = 0.905, so

111 -0.905  0.205

.100) = =
1(0-100) 0.100 0.100

= 2.05.

c¢. The third Maclaurin polynomials give

1 1 1 1
61%1+x+§x2+6x3 and e_wzl—x+§x2—6:63,
50 1,2 1,3 1,2 1,3 1,3
l+z+52°+z2°) — (1 —x+ 52° — ¢ 20+ s 1
f(x)z( 2 6 ) ( 2 6 ): 3 :2+§$2
x x

Thus, with three-digit rounding, we have

1
£(0.100) ~ 2 + 5(0.100)* = 2+ (0.333)(0.001) = 2.00 +0.000333 = 2.00.

c. Find the decimal equivalent of the floating-point machine number

0 01111111111 0101001100000000000000000000000000000000000000000000.

SOLUTION: This binary machine number is the decimal number

S GORORCRC)

11 1 1
C 0 (1o — ) =1 22 132421875,
<+4+16+128+256) T 55 — 132421875

c. Find the decimal equivalents of the next largest and next smallest floating-point machine number to

0 01111111111 0101001100000000000000000000000000000000000000000000.

SOLUTION: The next smallest machine number is

0 01111111111 0101001011111111111111111111111111111111111111111111
=1.32421875 — 2102371023 (2752)
=1.3242187499999997779553950749686919152736663818359375,

and next largest machine number is

0 01111111111 0101001100000000000000000000000000000000000000000001
=1.32421875 + 2102371023 (2752)
=1.3242187500000002220446049250313080847263336181640625.

21. a. Show that the polynomial nesting technique can be used to evaluate

f(z) = 1.01e™ — 4.62e3" — 3.11** + 12.2¢* — 1.99.



24.

Exercise Set 1.2

b. Use three-digit rounding arithmetic and the formula given in the statement of part (a) to evaluate
f(1.53).

¢. Redo the calculations in part (b) using the nesting form of f(x) that was found in part (a).
d. Compare the approximations in parts (b) and (c).
SOLUTION: a. Since e™® = (e*)", we can write

f(x) = ((((1.01)e* — 4.62) €® — 3.11) ” + 12.2) €* — 1.99.

b. Using e!'5% = 4.62 and three-digit rounding gives e2(1-53) = (4.62)2 = 21.3,
e3(1:53) — (4.62)%(4.62) = (21.3)(4.62) = 98.4, and ¢*(1:53) = (98.4)(4.62) = 455. So

F(1.53) = 1.01(455) — 4.62(98.4) — 3.11(21.3) + 12.2(4.62) — 1.99
— 460 — 455 — 66.2 + 56.4 — 1.99
—5.00 — 66.2 + 56.4 — 1.99
= —61.2456.4 — 1.99 = —4.80 — 1.99 = —6.79.

c. We have

F(1.53) = (((1.01)4.62 — 4.62)4.62 — 3.11)4.62 + 12.2)4.62 — 1.99
((4.67 — 4.62)4.62 — 3.11)4.62 + 12.2)4.62 — 1.99
(0.231 — 3.11)4.62 + 12.2)4.62 — 1.99

—13.3+12.2)4.62 — 1.99 = —7.07.

(
(
(
(

d. The exact result is 7.61, so the absolute errors in parts (b) and (c) are, respectively,
| —6.79 + 7.61| = 0.82 and | — 7.07 + 7.61| = 0.54. The relative errors are, respectively, 0.108 and
0.0710.

Suppose that fI(y) is a k-digit rounding approximation to y. Show that

’y—fl(y)

7} < 0.5 x 107F+1,
Yy

SOLUTION: We will consider the solution in two cases, first when dy4; < 5, and then when
dk+1 > 5.

When dj4; < 5, we have

- fl 0.djsq...x 10" %  05x 10k
y= W) _ Odiss - < 22X — 0.5 x 107+,
y 0.dy...x 10" 0.1

When dj4; > 5, we have

=0.5 x 107+,

y—flly)| (1 —0udpgq...)x 10"k _ (1-0.5) x 107*
y N 0.dy ... x 107 0.1

Hence the inequality holds in all situations.
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28. Show that both sets of data given in the opening application for this chapter can give values of 7" that
are consistent with the ideal gas law.

SOLUTION: For the initial data, we have
0.995 < P < 1.005, 0.0995 <V <0.1005,

0.082055 < R < 0.082065, and 0.004195 < N < 0.004205.

This implies that
287.61 < T < 293.42.

Since 15° Celsius = 288.16 kelvin, we are within the bound. When P is doubled and V is halved,
1.99 < P <201 and 0.0497 <V <0.0503,

¢
286.61 < T < 293.72.

Since 19° Celsius = 292.16 kelvin, we are again within the bound. In either case it is possible that the
actual temperature is 290.15 kelvin = 17° Celsius.

Exercise Set 1.3, page 39

3. a. Determine the number n of terms of the series
> . 221
arctanz = lim P,(z) = Z(—l)“rl

n— o0 pt (2i — 1)

that are required to ensure that [4P,, (1) — 7| < 1073.
b. How many terms are required to ensure the 10~ % accuracy needed for an approximation to 7?
SOLUTION: a. Since the terms of the series

1

= 4arctanl = 4 1)t —
T arctan Z( ) 51

=1

alternate in sign, the error produced by truncating the series at any term is less than the magnitude of
the next term. To ensure significant accuracy, we need to choose n so that

- <107 4000 < 2n + 1.
2(n+1)—1< or < 2n +

Son > 2000.

b. In this case, we need

ST D)1 <10 or n>20,000,000,000.

Clearly, a more rapidly convergent method is needed for this approximation.
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5. Another formula for computing 7 can be deduced from the identity

™ A arct 1 ¢ 1
— = 4arctan — — arctan —.
4 5 239

Determine the number of terms that must be summed to ensure an approximation to 7 to within 1073,

SOLUTION: The identity implies that

= . 1 = . 1
_ 4 _1 1+1 i _ _1 i+1 i
" ;( NPT ;( " B
The second sum is much smaller than the first sum. So we need to determine the minimal value of ¢
so that the ¢ 4+ 1st term of the first sum is less than 1073, We have

4 4 4 4 4 4

=1 — == = d i=3: =
! ! ane v 55(5) 15625

: = — =2.56 x 1074,
5I1) 5 53(3) 375 8

So 3 terms are sufficient.

. a. How many calculations are needed to determine a sum of the form

i i CLibj?

i=1 j=1
b. Re-express the series in a way that will reduce the number of calculations needed to determine this

sum.

SOLUTION: a. For each i, the inner sum 22:1 a;b; requires ¢ multiplications and ¢ — 1 additions,
for a total of

E 1 - 1
Ei = @ multiplications and Elz -1= @ —n additions.
Once the n inner sums are computed, n — 1 additions are required for the final sum.
The final total is:
nin+1)

2

(n+2)(n-1)

dditions.
5 additions

multiplications  and

b. By rewriting the sum as
n

i n 7
I IES DA
i=1 j=1 i=1 =1
we can significantly reduce the amount of calculation. For each ¢, we now need 7 — 1 additions to sum
b;’s for a total of

1
Zi —1= n(nT—i—) —n additions.

Once the b;’s are summed, we need n multiplications by the a;’s, followed by n — 1 additions of the
products.

The total additions by this method is still 1(n + 2)(n — 1), but the number of multiplications has
been reduced from 1n(n + 1) to n.



Mathematical Preliminaries

10. Devise an algorithm to compute the real roots of a quadratic equation in the most efficient manner.

SOLUTION: The following algorithm uses the most effective formula for computing the roots of a
quadratic equation.

INPUT A, B, C.
OUTPUT X1, 2.

Step 1 If A = 0 then
if B = 0 then OUTPUT (‘NO SOLUTIONS);
STOP.
else set z, =-C/B;
OUTPUT (‘ONE SOLUTION’,x1);
STOP.

Step 2 Set D = B? — 4AC.

Step 3If D = 0 then set z; = —B/(2A);
OUTPUT (‘MULTIPLE ROOTS’, z1);

STOP.

Step 4 If D < 0 then set
b=+-D/(24);
a=—-B/(2A);

OUTPUT (‘COMPLEX CONJUGATE ROOTS’);
1 = a+ bi;
To = a — bi;
OUTPUT (.Il, .IQ);
STOP.
Step S If B > 0 then set
d= B+ VD;
T = —QO/d,
xo = —d/(24)
else set
d=—B+/D;
x1 = d/(24);
Step 6 OUTPUT (1, 2:2);

STOP.

15. Suppose that as x approaches zero,
Fi(z)=Li+0(z*) and Fy(z) = Lo+ O (2”).
Let ¢; and co be nonzero constants, and define
F(z) =ciFi(z) + coF2(x) and G(z) = Fi(c1x) + Fa(cax).

Show that if v = minimum {«, 3}, then as 2 approaches zero,

a. F(:E) =c1L1 +colo+ O (:ZT’Y)

11
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16.

17.

Exercise Set 1.3

b. G(I) =11+ L+ 0 (ZE'Y)

SOLUTION: Suppose for sufficiently small |z| we have positive constants k1 and ks independent of
x, for which
|Fi(z) — Li| < Kq|z|* and  |Fa(z) — Lo| < Kolz|’.

Let ¢ = max (Jc1 |, [e2], 1), K = max (K7, K3), and § = max («, ).
a. We have
|F(£L‘) —c1 L1 — 62L2| :|Cl (Fl (ac) — Ll) + CQ(FQ(&L‘) — L2)|
<ler| Kilz|® + [eo| Ko z]?
<cK (|z|* + |2|?)
<cKla[" (L4 |2°77) < K|z,
for sufficiently small |z|. Thus, F'(z) = ¢1 L1 + caLa + O (7).
b. We have
|G(I) - Ll - L2| :|F1(01I) + FQ(CQI) - L1 — L2|
SK1|61$|Q + K2|02{E|5
<K (|| + |2)7)
<K e (1+[2°77) < K",

for sufficiently small |x|. Thus, G(z) = L1 + Lo + O (27).

Consider the Fibonacci sequence defined by £y = 1, F} = 1,and F,1 0 = F,41 + F,,,if n > 0.
Define 2,, = F},11/F,. Assuming that lim,, , o ,, = 2 converges, show that the limit is the golden
ratio: z = (14 /5) /2.

SOLUTION: Since

. . 1
lim z, = lim 2,41 =2 and xz,41 =1+ —,
n—o0o n—oo Tn

we have 1
x =1+ —, whichimpliesthat 2% —2 —1=0.
x

The only positive solution to this quadratic equation is © = (1 + \/5) /2.

The Fibonacci sequence also satisfies the equation
1+v5\" (1-vB\"
2 2 '

a. Write a Maple procedure to calculate Fqg.

~ 1
F,=F, =—
V5

b. Use Maple with the default value of Digits followed by evalf to calculate Fioo.
c. Why is the result from part (a) more accurate than the result from part (b)?
d. Why is the result from part (b) obtained more rapidly than the result from part (a)?

e. What results when you use the command simplify instead of evalf to compute Fi00?
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SOLUTION: a. To save space we will show the Maple output for each step in one line. Maple would
produce this output on separate lines. The procedure for calculating the terms of the sequence are:

fori from 1 ton do
l:=f+s;f:=s8s:=10d:
1:=3 f:= §:=

[ :=218922995834555169026  f := 135301852344706746049 s := 218922995834555169026
[ :=354224848179261915075

b. We have

F100 := sq;@ (((1 +S2Qrt(5)>100 B <1_+m(5)>100>
- (34) - (3-29) ")

0.3542248538 x 102!

evalf{ F100)

¢. The result in part (a) is computed using exact integer arithmetic, and the result in part (b) is
computed using ten-digit rounding arithmetic.

d. The result in part (a) required traversing a loop 98 times.

e. The result is the same as the result in part (a).
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Solutions of Equations of One Variable

Exercise Set 2.1, page 54

1. Use the Bisection method to find p3 for f(z) = /= — cosx on [0, 1].

SOLUTION: Using the Bisection method gives a; = 0 and b; = 1, so f(a1) = —1 and
f(b1) = 0.45970. We have

p1= %(al +by) = % and  f(p1) = —0.17048 < 0.
Since f(a1) < 0and f(p1) < 0, we assign as = p; = 0.5 and by = b; = 1. Thus
Flaz) = —0.17048 < 0, f(bo) = 0.45970 > 0, and po = %(QQ +by) = 0.75.
Since f(p2) = 0.13434 > 0, we have ag = 0.5; bs = p3 = 0.75 so that

1
pP3 = 5(0,3 + bg) = 0.625.

2. a.Let f(z) =3(z+1) (x — 3) (z — 1). Use the Bisection method on the interval [—2, 1.5] to find ps.
SOLUTION: Since

@) =3+ 1) (2= 3) - 1,

we have the following sign graph for f(x):

X+1 —=—==—= O++++++++++++++++++
X—3 - == 0+++++++++++ +
X=1 - I VR i o S o o S S
fo) - —— - - —0+ 0= O+ +++++++++
I Q —0o—>0 I i >
-2 -1 0 % 1 2 3 X

Thus, a; = —2, with f(a1) < 0, and by = 1.5, with f(by) > 0. Since p; = — 1, we have f(p1) > 0.
We assign az = —2, with f(az) < 0, and by = —1, with f(b2) > 0. Thus, p, = —1.125 and
f(p2) < 0. Hence, we assign as = pa = —1.125 and b5 = —0.25. Then p3 = —0.6875.

15
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a. Sketch the graphs of y = z and y = tan .

b. Use the Bisection method to find an approximation to within 10~ to the first positive value of
with x = tan x.

SOLUTION:

a. The graphs of y = x and y = tan x are shown in the figure. From the graph it appears that the
graphs cross near x = 4.5.

10 Ly =x

b. Because g(x) = x — tanx has

9(4.4)~1.303>0 and ¢(4.6) ~ —4.260 < 0,

the fact that ¢ is continuous on [4.4, 4.6] gives us a reasonable interval to start the bisection process.
Using Algorithm 2.1 gives p1g = 4.4934143, which is accurate to within 10~°.

Let f(x) = (z + 2)(x + 1)z(z — 1)3(z — 2). To which zero of f does the Bisection method
converge for the following intervals?

a. [—3,2.5]
c. [-1.75,1.5]
SOLUTION: Since
fla) = (z+2)(z + Da(z - 1)°(z - 2),

we have the following sign graph for f(x).

X+2 ————0+ -+ttt t Attt bbb
x+1 ———————— O++++++++++++++++++
X —m e — =0ttt

3

x=2" - e | I R R A &
X—2 ———m e m o — O++++++
f) ————0+++0---0+++0-—-0++++++

| O O O O Q | >

-3 -2 -1 0 1 2 3 X

a. The interval [—3, 2.5] contains all 5 zeros of f. For a; = —3, with f(a1) < 0, and by = 2.5, with
f(b1) > 0, we have p; = (—3 +2.5)/2 = —0.25, s0 f(p1) < 0. Thus we assign az = p; = —0.25,
with f(az) < 0, and by = by = 2.5, with f(b1) > 0.
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12.

14.

17.

19.

Hence py = (—0.25 4 2.5)/2 = 1.125 and f(p3) < 0. Then we assign a3 = 1.125, with f(agz) < 0,
and bz = 2.5, with f(b3) > 0. Since [1.125, 2.5] contains only the zero 2, the method converges to 2.

c. The interval [—1.75, 1.5] contains the zeros —1, 0, 1. For a; = —1.75, with f(a;) > 0, and

by = 1.5, with f(b1) < 0, we have p; = (—1.75+ 1.5)/2 = —0.125 and f(p1) < 0. Then we assign
as = a1 = —1.75, with f(aq1) > 0, and by = p; = —0.125, with f(b2) < 0. Since [-1.75, —0.125]
contains only the zero —1, the method converges to —1.

Use the Bisection Algorithm to find an approximation to v/3 that is accurate to within 10~%.

SOLUTION: The function defined by f(x) = x> — 3 has v/3 as its only positive zero. Applying the
Bisection method to this function on the interval [1, 2] gives v/3 &~ p14 = 1.7320. Using a smaller
starting interval would decrease the number of iterations that are required.

Use Theorem 2.1 to find a bound for the number of iterations needed to approximate a solution to the
equation z° + z — 4 = 0 on the interval [1, 4] to an accuracy of 1073,

SOLUTION: First note that the particular equation plays no part in finding the bound; all that is
needed is the interval and the accuracy requirement. To find an approximation that is accurate to
within 102, we need to determine the number of iterations 7 so that
b— 4—-1
[p=pal < T3 = 55— <0.00%; thatis, 3 10° < 2"
As a consequence, a bound for the number of iterations is n > 12. Applying the Bisection Algorithm
gives p1o = 1.3787.

"1
Define the sequence {p;, } by p, = E e Show that lim (p,, — pr—1) = 0, even though the
n— oo
k=1
sequence {p, } diverges.

SOLUTION: Since p,, — pn—1 = 1/n, we have lim,,—, o (pr, — pn—1) = 0. However, p,, is the nth
partial sum of the divergent harmonic series. The harmonic series is the classic example of a series
whose terms go to zero, but not rapidly enough to produce a convergent series. There are many proofs
of the divergence of this series, any calculus text should give at least two. One proof will simply
analyze the partial sums of the series and another is based on the Integral Test.

The point of the problem is not the fact that this particular sequence diverges, it is that a test for an
approximate solution to a root based on the condition that |p,, — p,,—1| is small should always be
suspect. Consecutive terms of a sequence might be close to each other, but not sufficiently close to the
actual solution you are seeking.

A trough of water of length L = 10 feet has a cross section in the shape of a semicircle with radius

r = 1 foot. When filled with water to within a distance h of the top, the volume V' = 12.4 £t3 of the
water is given by the formula

12.4 = 10 |0.57 — arcsinh — h (1 — h?)l/z}

Determine the depth of the water to within 0.01 feet.
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SOLUTION: Applying the Bisection Algorithm on the interval [0, 1] to the function
F(h) =12.4 =10 [0.57 — arcsinh — b (1~ 1) "/’]

gives h = p13 = 0.1617, so the depthis 7 — h =~ 1 — 0.1617 = 0.8383 feet.

Exercise Set 2.2, page 64

3. The following methods are proposed to compute 21'/3. Rank them in order, based on their apparent
speed of convergence, assuming py = 1.

~ 20p,—1 +21/p2

a.py,

21
3
Pn—1— 21
b.pn =pp1 — ——5—
3]9121—1
cn o P =2lpa
« Pn Pn—1 pifl—-Ql

21 1/2
d'pn: < >
Pn-1

SOLUTION: a. Since

_ 20p,1 +21/ph 4 20w +21/27 20 1

wehave g¢(z)= ———=—a+ —

bn 21 ’ 21 Tt T
20 2 20 2 6
dg'(z) = = — —. Thus, ¢’ (21'/3) = = — — = ~ =~ 0.857.
and ¢/(x) = 57 — o5 Thus. o' (21°) = 53— o7 = 5
b. Since
3 3
po_q1 —21 x® —21 1 7 2 7
p":pnfl_i?)pi_l , wehave g(x)::r—?:x—gx—i-F:gx—i-ﬁ
2 7 2 1 1 _
dd =2 — — _ Thus, ¢ (21/3) = = — = = - =0.333.
and ¢'(z) 37 o8 us, g ( ) 5733
¢. Since A
_ _ pn—l - 21pn—1
Pn Pn—1 p%,l DY )
we have
( ) zt =21z 23 — 21z — 2t + 21z xd — 2t
Xr)=—=x — = —
9 22 — 21 22 — 21 2 — 21
and
(o) (2% —21) (3x2 — 41:3) — (2% - x4) 2 3z* — 6322 — 42° + 8413 — 2% + 22°
g €Tr) = =

(22 —21)* (z2 — 21)°
B —22° + 2% + 8423 — 6322
(22 —21)°
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12.

14.

18.

Thus ¢’ (21'/3) ~ 5.706 > 1.

d. Since
. 21 1/2 e have (x) B E 1/2 - o
b= Pn—1 ’ g\ = T = 2
—v21 1/3 1
andg’(x) = W Thus, ¢’ (21 / ) — —5

The order of convergence would likely be (b), (d), (a). Choice (c) will not likely converge.

. Use a fixed-point iteration method to determine an approximation to v/3 that is accurate to within

10~4.

SOLUTION: As always with fixed-point iteration, the trick is to choose the fixed-point problem that
will produce rapid convergence.

Recalling the solution to Exercise 12 in Section 2.1, we need to convert the root-finding problem
f(x) = 22 — 3 into a fixed-point problem. One successful solution is to write

0=22-3 as T = —,
T

then add  to both sides of the latter equation and divide by 2. This gives g(z) = 0.5 (z + 2), and for
po = 1.0, we have /3 ~ p, = 1.73205.

¢. Determine a fixed-point function g and an appropriate interval that produces an approximation to a
positive solution of 322 — e” = 0 that is accurate to within 1072,

SOLUTION: There are numerous possibilities:
For g(z) = ,/%e”” on [0, 1] with py = 1, we have p12 = 0.910015.
For g(z) = In 322 on [3, 4] with pg = 4, we have p1g = 3.733090.

Use a fixed-point iteration method to determine a solution accurate to within 10~ for 2 = tan z, for
x in [4,5].
SOLUTION: Using g(z) = tanz and po = 4 gives p1 = g(po) ~ 1.158, which is not in the interval
[4,5]. So we need a different fixed-point function. If we note that z = tan x implies that

1 1

1 1
- = and define g(x) = +
T

tanx tanx x

we obtain, again with pg = 4:
p1 ~ 4.61369, po =4.49596, p3 =4.49341 and pg = 4.49341.

Because ps and p4 agree to five decimal places it is reasonable to assume that these values are
sufficiently accurate.

a. Show that Theorem 2.3 is true if |¢'(x)| < k is replaced by the statement “¢’(z) < k < 1, for all
x € [a,b]”.

b. Show that Theorem 2.4 may not hold when |¢'(z)| < k is replaced by the statement
“g'(x) <k <1, forallx € [a,b]”.
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SOLUTION: a. The proof of existence is unchanged. For uniqueness, suppose p and q are fixed
points in [a, b] with p # ¢. By the Mean Value Theorem, a number ¢ in (a, b) exists with

p—qa=9)—9(@) =9'"(E)p—q) <k(p—q) <p—gq,

giving the same contradiction as in Theorem 2.3.

b. For Theorem 2.4, consider g(z) = 1 — 22 on [0, 1]. The function g has the unique fixed point
p= % ( -1+ \/5) . With pg = 0.7, the sequence eventually alternates between numbers close to 0
and to 1, so there is no convergence.

a. Use Theorem 2.4 to show that the sequence

1 n 1
Tp = —Tp—
2 ! Tn—1

converges for any zg > 0.
b. Show that if 0 < g < V2, then z1 > /2.
c¢. Show that the sequence in (a) converges for every zg > 0.

SOLUTION: a. Firstlet g(x) = x/2 + 1/2. For x # 0, we have ¢'(z) = 1/2 — 1/2%. If 2 > V/2,
then 1/22? < 1/2,s0 ¢'(z) > 0. Also, g (\/5) =2.

Suppose, as is the assumption given in part (a), that 2o > /2. Then
7 = V2= g(wo) g (V2) = 4'(&) (v0 ~ V2).

where v/2 < ¢ < xo. Thus, 1 — V2 > 0 and x> /2. Further,

and V2 < 1 < xp. By an inductive argument, we have
\/§<$m+1 < Ty < ...<x0.

Thus, {x,,} is a decreasing sequence that has a lower bound and must therefore converge. Suppose

p = limy, o0 Tsp. Then
. (xm—l 1 )
p= lim + =
m— 00 2 Tm—1

1
+ —, which implies that p? = 2,
p

+

[N

1
.
Thus

N3

p:

s0p = +v/2. Since z,, > V2 for all m, lim,, o0 Zm = V2.
b. Consider the situation when 0 < 2y < v/2, which is the situation in part (b). Then we have

2
0< (3:0—\/5) :x8—2x0\/§—|—2,

SO
1

2x9V2 < 23 +2 and \/§<%+—:x1.
Zo
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¢. To complete the problem, we consider the three possibilities for zg > 0.

Case 1: 2o > v/2, which by part (a) implies that lim,, o0 2, = V2.

Case 2: 19 = /2, which implies that x,,, = V2 for all m and that lim,, oo Zm = V2.
Case 3: 0 < xo < /2, which implies that V2 < aq by part (b). Thus

O<x0<\/§<xm+1<xm<...<x1 and  lim xm:\/i
—

m (oo}
In any situation, the sequence converges to v/2, and rapidly, as we will discover in the Section 2.3.

24. Suppose that the function g has a fixed-point at p, that g € C|a, b], and that ¢’ exists in (a, b). Show
that if |¢’(p)| > 1, then the fixed-point sequence will fail to converge for any initial choice of po,
except if p,, = p for some value of n.

SOLUTION: Since ¢’ is continuous at p and |g’(p)| > 1, by letting € = |¢'(p)| — 1 there exists a
number 6 > 0 such that

l9'(x) —g'(p)| <e=1g'(P)| - 1,
whenever 0 < |z — p| < J. Since

9'(z) = g'(P)] = |g'(p)] — 1g' ()],
for any x satisfying 0 < |z — p| < 4, we have

' @) = 1g'(p)| = 19’ (x) — g'(P)| > |9 (P)] = (g’ (P)| = 1) = L.

If pg is chosen so that 0 < |p — pg| < J, we have by the Mean Value Theorem that
lp1 = pl = lg(po) — 9(p) = lg'(€)llpo — pI,
for some ¢ between pg and p. Thus, 0 < |p — &| < § and
Ip1 = pl = 1g'(O)lpo — pl > Ipo — pl.

This means that when an approximation gets close to p, but is not equal to p, the succeeding terms of
the sequence move away from p. So the sequence cannot converge to p.

Exercise Set 2.3, page 75

1. Let f(z) = 22 — 6 and pg = 1. Use Newton’s method to find ps.

SOLUTION: Let f(x) = 22 — 6. Then f’(z) = 2z, and Newton’s method becomes

Pn=p 1_f(pn—1) —p 1_p%,1—6
" " f/(pn—l) " 2pn71
With pg = 1, we have
2—6 1-6
p=po— = =1 —1425=35
Po 2
and ) ,
—6 3.5 —6
pr=p— 72 _35 27 72 _ 960714,

2p1 2(3.5)
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3. Let f(x) = 22 — 6. With pg = 3 and p; = 2, find p3 for (a) the Secant method and (b) the method of

False Position.

¢. Which method gives better results?

SOLUTION: The formula for both the Secant method and the method of False Position is

f(pn—l)(pn—l —pn—z)
f(pn71) - f(pn72) '

Pn =Pn—-1—

a. The Secant method:
With py = 3 and p; = 2, we have f(py) =9 — 6 = 3 and f(p1) =4 — 6 = —2. The Secant method
gives

fp1)(p1 —po) (=2)(2-3) 2

PP ) — e 0 —2-3 =5

and f(p2) = 2.4 — 6 = —0.24. Then we have
(—0.24)(2.4 — 2) ~0.096

fo2)pa—p) _,, (F02024-2) _ ~ —0096
o0 T =2 Coaio ) =24 gag =244

p3 =p2 —

b. The method of False Position:

With pg = 3 and p; = 2, we have f(pp) = 3 and f(p1) = —2. As in the Secant method (part (a)),
p2 = 2.4 and f(p2) = —0.24. Since f(p1) < 0 and f(p2) < 0, the method of False Position requires
areassignment of p;. Then p; is changed to pg so that p; = 3, with f(p1) = 3, and p2 = 2.4, with
f(p2) = —0.24. We calculate ps by

f(p2)(p2 —p1) _ 2.4 — (£024)(2.4-3) _ o4 Q14 o

N ) T T

¢. Since V6 ~ 2.44949, the accuracy of the approximations is the same. Continuing to more
approximations would show that the Secant method is better.

. ¢. Apply Newton’s method to find a solution to z — cos z = 0 in the interval [0, 7r/2] that is accurate

to within 104,

SOLUTION: With f(x) = 2 — cosx, we have f/(x) = 1 4 sinz, and the sequence generated by
Newton’s method is
Pn1=COSPn 1

1+sinp,_1

For po = 0, we have p1 = 1, p» = 0.75036, p3 = 0.73911, and ps = 0.73909.

Pn = Pn—1 —

. ¢. Apply the Secant method to find a solution to  — cos 2 = 0 in the interval [0, 7/2] that is accurate

to within 104,

SOLUTION: The Secant method approximations are generated by the sequence

(pnfl - Cospnfl)(pnfl - pn72)
Pn—1 — COSpn—l) - (pn—2 - COSpn—2) .

Pn = Pn—1 — (
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Using the endpoints of the intervals as pg and p;, we have the entries in the following table.

n Pn

0
1.5707963
0.6110155
0.7232695
0.7395671
0.7390834
0.7390851

ST W= O

9. c. Apply the method of False Position to find a solution to = — cos z = 0 in the interval [0, 7 /2] that is
accurate to within 10~%.

SOLUTION: The method of False Position approximations are generated using this same formula as

in Exercise 7, but incorporates the additional bracketing test. Using the endpoints of the intervals as
po and p1, we have the entries in the following table.

3

Pn

0
1.5707963
0.6110155
0.7232695
0.7372659
0.7388778
0.7390615
0.7390825

N O ULk W NN~ O

13. Apply Newton’s method to find a solution, accurate to within 10~%, to the value of z that produces
the closest point on the graph of y = 22 to the point (1,0).

SOLUTION: The distance between an arbitrary point (x, xQ) on the graph of y = z2 and the point
(1,0) is

d(z) = \/($—1)2+(:102 —0)? =Vt + a2 - 22+ 1.
Because a derivative is needed to find the critical points of d, it is easier to work with the square of
this function,
f(z) = [d(x)]? = 2 + 2% — 22+ 1,
whose minimum will occur at the same value of = as the minimum of d(x). To minimize f(x) we
need x so that 0 = f/(x) = 42 + 22 — 2.

Applying Newton’s method to find the root of this equation with py = 1 gives p; = 0.589755. The
point on the graph of y = 2 that is closest to (1,0) has the approximate coordinates
(0.589755,0.347811).
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16.

19.

22,

Exercise Set 2.3

Use Newton’s method to solve for roots of
1 1

1
0==+ -2 —zsinz — = cos 2z.

2 4

SOLUTION: Newton’s method with pg = 3 gives p15 = 1.895488 and with pg = 5 gives

p1o9 = 1.895489. With py = 107, the sequence does not converge in 200 iterations.

The results do not indicate the fast convergence usually associated with Newton’s method because the
function and its derivative have the same roots. As we approach a root, we are dividing by numbers
with small magnitude, which increases the round-off error.

Explain why the iteration equation for the Secant method should not be used in the algebraically
equivalent form

f(Pn—l)pn—z - f(pn—2)pn—1 '

bn = f(pn—1) = f(Pn—2)

SOLUTION: This formula incorporates the subtraction of nearly equal numbers in both the
numerator and denominator when p,,_; and p,,_o are nearly equal. The form given in the Secant
Algorithm subtracts a correction from a result that should dominate the calculations. This is always
the preferred approach.

Use Maple to determine how many iterations of Newton’s method with pg = 7/4 are needed to find
aroot of f(x) = cosx — x to within 1071,

SOLUTION: We first define f(z) and f’(x) with
fi=x—>cos(x) —z
fi=x — cos(x) —x

and

fpi=a=>(D)(f)(x)

fp:=x— —sin(zr) — 1

We wish to use 100-digit rounding arithmetic so we set
Digits := 100; p0 := Pi/4
Digits := 100

1
p0 = Zw

forn from1to 7 do

pl == evalf(p0 — f(p0)/ fp(p0))
err := abs(pl — p0)

p0 :=pl
od
This gives

p7 = .73908513321516064165531208767387340401341175890075746496
56806357732846548835475945993761069317665319,

which is accurate to 107199,
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23. The function defined by f(x) = In (22 + 1) — €*** cos 7 has an infinite number of zeros.

26.

a. Approximate the only negative zero to within 1075,

b. Approximate the four smallest positive zeros to within 1076,
c. Find an initial approximation for the nth smallest positive zero.
d. Approximate the 25th smallest positive zero to within 107°,

SOLUTION: The key to this problem is recognizing the behavior of €%4*. When z is negative, this
term goes to zero, so f(x) is dominated by In (2% + 1). However, when x is positive, ”* dominates
the calculations, and f(x) will be zero approximately when this term makes no contribution; that is,
when cos ma = 0. This occurs when 2z = n/2 for a positive integer n. Using this information to
determine initial approximations produces the following results:

a. We can use pp = —0.5 to find the sufficiently accurate ps = —0.4341431.

b. We can use: pg = 0.5 to give ps = 0.4506567; pg = 1.5 to give ps = 1.7447381; pg = 2.5 to give
ps = 2.2383198; and pg = 3.5 to give py = 3.7090412.

c. In general, a reasonable initial approximation for the nth positive root is n — 0.5.

d. Let py = 24.5. A sufficiently accurate approximation to the 25th smallest positive zero is
p2 = 24.4998870.

Graphs for various parts of the region are shown below.

Ay vy v Y
L 1+ 600 +30000

Determine the minimal annual interest rate ¢ at which an amount P = $1500 per month can be
invested to accumulate an amount A = $750, 000 at the end of 20 years based on the annuity due
equation

Az?[(lJri)"—l].

SOLUTION: This is simply a root-finding problem where the function is given by

P 1500
)= A= = [(1+i)" = 1] = 750000 — —— [(1+/12)02@) — 1],
Ji)=A-Z[(1+i) -1 ) (1 +i/12)
Notice that n and ¢ have been adjusted because the payments are made monthly rather than yearly.
The approximate solution to this equation can be found by any method in this section. Newton’s
method is a bit cumbersome for this problem, since the derivative of f is complicated. The Secant
method would be a likely choice. The minimal annual interest is approximately 6.67%.
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28.

29.

Exercise Set 2.3

A drug administered to a patient produces a concentration in the blood stream given by
c(t) = Ate~'/3 mg/mL, t hours after A units have been administered. The maximum safe
concentration is 1 mg/mL.

a. What amount should be injected to reach this safe level, and when does this occur?

b. When should an additional amount be administered, if it is administered when the level drops to
0.25 mg/mL?

c. Assuming 75% of the original amount is administered in the second injection, when should a third
injection be given?

SOLUTION: a. The maximum concentration occurs when
/ t —t/3
0=dt)=A(1- 3)e

This happens when ¢ = 3 hours, and since the concentration at this time will be ¢(3) = 34e~!, we
need to administer A = %e units.

b. We need to determine ¢ so that
1 —t/3
0.25 =¢(t) = 3¢ te= /",

This occurs when ¢ is 11 hours and 5 minutes; that is, when ¢t = 11.083 hours.
¢. We need to find ¢ so that

1 1 - 3
0.25 = c(t) = <§e> te V3 40.75 <§e) (t —11.083)e~ (1711:083)/3,

This occurs after 21 hours and 14 minutes.

Let f(x) = 3%+ — 7. 527,

a. Use the Maple commands solve and fsolve to try to find all roots of f.
b. Plot f(z) to find initial approximations to roots of f.
c. Use Newton’s method to find the zeros of f to within 10716,
d. Find the exact solutions of f(z) = 0 algebraically.
SOLUTION: a. First define the function by
fi=a— >33t _7.52
fi= g — 3B+ _ 7 g2

solve(f(x) =0,x)

In (3/7)

In (27/25)

Sfsolve(f(z) =0,2)
fsolve(3C3* ) — 7520 — 0, 1)

The procedure solve gives the exact solution, and fsolve fails because the negative x-axis is an
asymptote for the graph of f(x).
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b. Using the Maple command plot({ f ()}, z = 9.5..11.5) produces the following graph.

A y
3x101 3
2x10%L

1x10°]

-1 105
LI S -t

11 115 12 X

c. Define f/(x) using
fpi=a=>(D)(f)(x)

fp =z — 336"+ 1n(3) — 14 522) In(5)
Digits := 18;p0 := 11

Digits := 18
p0:=11
fori from1to 5 do
pl == evalfip0 — f(p0)/ fp(p0))
err := abs(pl — p0)
p0 :=pl
od
The results are given in the following table.
i Di Ipi — pi—1|

11.0097380401552503  0.0097380401552503
11.0094389359662827  0.0002991041889676
11.0094386442684488  0.2916978339 106
11.0094386442681716 0.2772 102
11.0094386442681716 0

T W N =

d. We have 33*+! = 7. 527 Taking the natural logarithm of both sides gives
(3x4+1)In3 =1In7+ 22In5.

Thus .
3xIn3 —2zxIn5=In7—-1n3, z(3In3—-2In5) zlng,

and
In7/3 In7/3 In3/7

YT 27 —n25  Wm27/25  In27/25

This agrees with part (a).
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Exercise Set 2.4, page 85

1. a. Use Newton’s method to find a solution accurate to within 10~ for 22 — 2ze~* 4+ ¢~ 2% = (),
where 0 < x < 1.

SOLUTION: Since
fx)=2*—2ze " +e 2 and f'(x)=2x—2e " +2we " — 227,
the iteration formula is

_ _ f(Pn-1) _ B P2 —2pp_1e Pt 4 e 2Pn1
et fl(p"_l) Pt 2pp_1 — 2e7Pn-1 4+ 2p, e Pn-1 — 2e=2Pn-1 ’

With py = 0.5, we have
p1 = 0.5 —(0.01134878)/(—0.3422895) = 0.5331555.

Continuing in this manner, p13 = 0.567135 is accurate to within 1072,

3. a. Repeat Exercise 1(a) using the modified Newton-Raphson method described in Eq. (2.13). Is there
an improvement in speed or accuracy over Exercise 1?
SOLUTION: Since

f(z) =22 — 2ze™" 4 727,
f'(x) =2z — 277 4 2ze™% — 2727,
and
f/(x) =2 +4e™ — 227" 4 4727,

the iteration formula is

Dn = Prn—1 — f(pnfl)f/(pnfl)
t T P a0 = F o) (1)

With pg = 0.5, we have f(po) = 0.011348781, f'(po) = —0.342289542, " (po) = 5.291109744
and

(0.01134878)(—0.342289542)

= 0.5680137.
(—0.342289542)2 — (0.011348781)(5.291109744)

pP1 = 0.5 —

Continuing in this manner, p3 = 0.567143 is accurate to within 10~°, which is considerably better
than in Exercise 1.

6. a. Show that the sequence p,, = 1/n converges linearly to p = 0, and determine the number of terms
required to have |p, — p| <5 x 1072,

1
SOLUTION: First note that lim — = 0. Since

n—oo 1
n - . 1 1 .

lim M = lim [(n+1) = lim =1,

n—oo |p, — p| n—»00 1/n n—oon + 1

the convergence is linear. To have |p, — p| < 5 x 1072, we need 1/n < 0.05, which implies that
n > 20.
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8.

10.

12.

Show that:

a. The sequence p, = 10~2" converges quadratically to zero;

b. The sequence p,, = 10" does not converge to zero quadratically, regardless of the size of & > 1.
SOLUTION:

a. Since

foy o =0l 107 107 107
nl—>nolo |pn — O|2 B nl—>nolo (10—2”)2 B nl—>nolo 1072'271 B nl—>nolo 10*2"+1 -

the sequence is quadratically convergent.

b. Forany k > 1,

_ —(n+1)" —(n+1)k
lim M — Jim =1 LU — lim 102" - (D"

n— oo |pn—0|2 _ni{r;o (10—71’“)2 n—»rr;o 10—2n* n— oo

diverges. So the sequence p,, = 10~"" does not converge quadratically for any k£ > 1.

Show that the fixed-point method

has ¢’(p) = 0, if p is a zero of f of multiplicity m.

SOLUTION: If f has a zero of multiplicity m at p, then a function g exists with

f(@) = (2 —p)"q(), where lim q(z) # 0.
Since
f'(@) =m(x —p)" q(x) + (& — p)"d (2),
we have
o(e) = 7 — mf(z) _ m(x —p)™q(x)
f'(z) m(z —p)"tq(z) + (z — p)"q' (z)’
which reduces to
o) = m(z — p)q(x)

~ mg(z) + (z —p)d(2)

Differentiating this expression and evaluating at z = p gives
g(p)=1-
If f"” is continuous, Theorem 2.9 implies that this sequence produces quadratic convergence once we

are close enough to the solution p.

Suppose that f has m continuous derivatives. Show that f has a zero of multiplicity m at p if and
only if
0=fp)=f®) =-=f""p), bu fO(p)#0.
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SOLUTION: If f has a zero of multiplicity m at p, then f can be written as

f(z) = (x—p)"q(z), forz#p, where lim g(z) #0.

T—p

Thus
f(x) =m(z —p)" lq(x) + (x — p)"q (x)
and f'(p) = 0. Also

f(@) =m(m—1)(z —p)™q(z) + 2m(z — p)" ¢ (x) + (x — p)"¢" (x)

and f"(p) = 0.
In general, for £ < m,

= (’?)m(m — 1) (m—j+ 1) —p)" I q* ) ().

<
Il
o

Thus, for 0 < k < m — 1, we have f*) (p) = 0, but

FO(p) = m! lim q(x) # 0.

T—p

Conversely, suppose that f(p) = f'(p) = ... = f(™=D(p) = 0 and (™) (p) # 0. Consider the
(m — 1)th Taylor polynomial of f expanded about p :

fU )@ —p)m M E@) @ =)
(m —1)! m!

f@)=f(p)+ f'(p)(x —p)+...+

() (£(x
—(o - pyLEE),

where £(z) is between 2 and p. Since f (m) is continuous, let

(m) (¢ (
o) = L2ED)
Then f(z) = (z — p)"q(x) and o
i () = 20 g

So p is a zero of multiplicity m.

Show that the Secant method converges of order «, where o = (1 + \/5) /2, the golden ratio.

SOLUTION: Lete, = p, —p. If

lim |e"+;| —)>0,

n—oo |ep,|

then for sufficiently large values of n, |e,, 11| ~ A|le,|*. Thus

len| = Nen_1]|® and |en_1] = A"V e, [/
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The hypothesis that for some constant C' and sufficiently large n we have
[Pnt1 — Pl = Clpn — pl [pn—1 — pl. gives

Men|® = Clen A% en| Y, so |en|® = CATY o e, |1/,
Since the powers of |e,,| must agree,

1+
2

=

a=1+1/a and o=

This number, the Golden Ratio, appears in numerous situations in mathematics and in art.

Exercise Set 2.5, page 90

2. Apply Newton’s method to approximate a root of
f(z) = €5 + 3(In2)%e* —In8e’® — (In2)® = 0.
Generate terms until [p,, 11 — pn| < 0.0002, and construct the Aitken’s A2 sequence {p,, }.
SOLUTION: Applying Newton’s method with py = 0 requires finding p;g = —0.182888. For the

Aitken’s A sequence, we have sufficient accuracy with pg = —0.183387. Newton’s method fails to
converge quadratically because there is a multiple root.

3. Letg(z) = cos(z — 1) and péo) = 2. Use Steffensen’s method to find pgl).

SOLUTION: With g(z) = cos(x — 1) and péo) = 2, we have

P\ =g (p”) = cos(2 — 1) = cos 1 = 0.5403023
and
Py =g (p\”) = cos(0.5403023 — 1) = 0.8961867.

Thus

(-

py” = 2pt" =2\ 4 pf”

- (0.5403023 — 2)2
0.8961867 — 2(0.5403023) + 2

=2—1.173573 = 0.826427.

5. Steffensen’s method is applied to a function g(x) using p((JO) = 1and péo) = 3 to obtain pgl) =0.75.
What could p!” be?

SOLUTION: Steffensen’s method uses the formula

© _ . (0) _ (pl Po

O <o>)2
pP1" =Dy

s — 2" +pf”
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Substituting for pé ), p(o) and pél) gives

2 2
0.75 =1 M thatis, 0.25 = M.
3—2p\0 41’ ’ 4 —2p"
Thus 1 )
1-5p” = (") -2 +1, 50 0= (pg0>) — 150,

and pgo) =15 orpgo) =0.

b. Use Steffensen’s method to approximate the solution to within 1075 of z = 0.5(sin z + cos z),
where g(z) = 0.5(sinx + cos ).

SOLUTION: With g(x) = 0.5(sinz + cos x), we have
P =0, pi” = g(0) = 0.5,
P = g(0.5) = 0.5(sin 0.5 + cos 0.5) = 0.678504051,
0) _ (0)
(pl — Po )
D _ 0 _ — 0777614774,

Py =P =
0 p<0> — 2p{® 1 p©

V=g ( “)) — 0707085363,

) =g (pg1>) — 0.704939584,

W _
p® —pt - 0 = 0.704872252
0 Po ' ’
NONPORSO

— 2p1
P =g (p<2>) — 0.704815431,
@y ( <2>) = 0.704812197,
(pgz) - p((f))

P =p§) =
P _2p®

P = g( <3>) = 0.704812002,

@ = = (.704812002,

and
ps” =g (p1”) = 0.704812197.

Since pé ), pg ), andp

accurate to within 1075

) an agree to within 1075, we accept pég) = 0.704812197 as an answer that is

a. Show that a sequence {p,, } that converges to p with order @ > 1 converges superlinearly to p.

1
b. Show that the sequence p, = —- converges superlinearly to 0, but does not converge of order « for
n
any o > 1.
SOLUTION: Since {p, } converges to p with order o > 1, a positive constant \ exists with
A= lim |Pnt1 — Pl

n=oo |py —p|*
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Hence
tim |2 L] = i M Ipn —p|* ' =X-0=0 and lim Pnt1 7P _
noo| pp—p | nooo |pn —pl® n—00 pp —p

This implies that {p,, } that converges superlinearly to p.

1 .
b. The sequence converges p, = —- superlinearly to zero because
n

(n+1) n
lim Y+ 1)"0 lim — "

) ( n ) 1
= lim

lim
n—oo \ (141 / ) ntl e
However, for o > 1, we have

] 1/(n+1)(n+1) . nomn
A T T T A T 1))

) n n n(a—l)n
= lim
n—oo \ n + 1 n—+1

1 n(oz—l)n 1
= lim (ﬁ) lim = — .00 = 0.

n—oo N+ 1 e
So the sequence does not converge of order « for any o > 1.

17. Let P,(x) be the nth Taylor polynomial for f(x) = e® expanded about 29 = 0.

a. For fixed z, show that p,, = P,,(x) satisfies the hypotheses of Theorem 2.14.

b. Let z = 1, and use Aitken’s A? method to generate the sequence po, p1, . . . , Ps-
c. Does Aitken’s A? method accelerate the convergence in this situation?
SOLUTION: a. Since

we have
- ——P(x)—ew——ig gt
bn=P " (n+1)! ’

where ¢ is between 0 and x. Thus, p,, — p # 0, for all n > 0. Further,

—ef1 +2 -
anrl —p . (nj—?) ’ﬂ o e(fl f)x
DPn — D (n—fi)!xn-i-l n+2

3

where &7 is between 0 and 1. Thus

[98]
[98]
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b. The sequence has the terms shown in the following tables.

n 0 1 2 3 4 ) 6

pn 1 2 2.5 2.6 2.7083 2.716 2.71805
Pn 3 275 272 271875 2.7183 2.7182870 2.7182823

n 7 8 9 10

pn 2.7182539 2.7182787 2.7182815 2.7182818
Dn  2.7182818 2.7182818

c. Aitken’s A% method gives quite an improvement for this problem. For example, pg is accurate to
within 5 x 10~7. We need p1¢ to have this accuracy.

Exercise Set 2.6, page 100
2. b. Use Newton’s method to approximate, to within 102, the real zeros of
P(z) = 2* — 223 — 122 4 162 — 40.

Then reduce the polynomial to lower degree, and determine any complex zeros.

SOLUTION: Applying Newton’s method with pg = 1 gives the sufficiently accurate approximation
p7 = —3.548233. When py = 4, we find another zero to be ps = 4.381113. If we divide P(z) by

(z + 3.548233) (z — 4.381113) = 2® — 0.832880x — 15.54521,
we find that
P(z) ~ (z* — 0.832880z — 15.54521) (2* — 1.167122 + 2.57315) .

The complex roots of the quadratic on the right can be found by the quadratic formula and are
approximately 0.58356 + 1.49419¢.

4. b. Use Miiller’s method to find the real and complex zeros of

P(z) = 2* — 223 — 122 4 162 — 40.

SOLUTION: The following table lists the initial approximation and the roots. The first initial
approximation was used because f(0) = —40, f(1) = —37, and f(2) = —56 implies that there is a
minimum in [0, 2]. This is confirmed by the complex roots that are generated.

The second initial approximations are used to find the real root that is known to lie between 4 and 5,
due to the fact that f(4) = —40 and f(5) = 115.
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[98]
9]

The third initial approximations are used to find the real root that is known to lie between —3 and —4,
since f(—3) = —61 and f(—4) = 88.

Po  pP1 D2 Approximated Roots Complex Conjugate Root
0 1 2 p7y =0.583560 — 1.494188i  0.583560 + 1.494188:
2 3 4 pe = 4.381113

-2 -3 -4 ps = —3.548233

5. b. Find the zeros and critical points of
f(z) = 2* —22° — 52% + 122 — 5,

and use this information to sketch the graph of f.

SOLUTION: There are at most four real zeros of f and f(0) < 0, f(1) > 0, and f(2) < 0. This,
together with the fact that lim,_,~, f(2) = oo and lim,_, _ f(z) = oo, implies that these zeros lie
in the intervals (—o00,0), (0,1), (1,2), and (2, 00). Applying Newton’s method for various initial
approximations in these intervals gives the approximate zeros: 0.5798, 1.521, 2.332, and —2.432. To
find the critical points, we need the zeros of

f'(z) = 42® — 62% — 10z + 12.

Since 2 = 1 is quite easily seen to be a zero of f/(z), the cubic equation can be reduced to a quadratic
to find the other two zeros: 2 and —1.5.

Since the quadratic formula applied to
0= f"(z) = 122% — 122 — 10

givesz = 0.5 £ (v/39/6), we also have the points of inflection.
A sketch of the graph of f is given below.

9. Find a solution, accurate to within 10~%, to the problem
600z* — 5502 + 2002? — 200 — 1 =0, for0.1<z<1

by using the various methods in this chapter.
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SOLUTION:

a. Bisection method: For pg = 0.1 and p; = 1, we have p14 = 0.23233.

b. Newton’s method: For pg = 0.55, we have pg = 0.23235.

¢. Secant method: For pg = 0.1 and p; = 1, we have pg = 0.23235.

d. Method of False Position: For po = 0.1 and p; = 1, we have pggs = 0.23025.

e. Miiller’s method: For pg = 0, p1 = 0.25, and p2 = 1, we have pg = 0.23235.

Notice that the method of False Position for this problem was considerably less effective than both the

Secant method and the Bisection method.

A can in the shape of a right circular cylinder must have a volume of 1000 cm®. To form seals, the
top and bottom must have a radius 0.25 cm more than the radius and the material for the side must be
0.25 cm longer than the circumference of the can. Minimize the amount of material that is required.

SOLUTION: Since the volume is given by
V = 1000 = 7r2h,

we have h = 1000/ (7r?). The amount of material required for the top of the can is 7(r + 0.25)2,
and a similar amount is needed for the bottom. To construct the side of the can, the material needed is
(27r 4 0.25)h. The total amount of material M (r) is given by

M(r) = 27(r + 0.25)2 + (277 4 0.25)h = 27 (r + 0.25)% 4 2000/ + 250 /772

Thus
M'(r) = 4n(r + 0.25) — 2000/r% — 500/ (7r).

Solving M'(r) = 0 for r gives r ~ 5.363858. Evaluating M () at this value of  gives the minimal
material needed to construct the can:

M (5.363858) ~ 573.649 cm?.

Leonardo of Pisa (Fibonacci) found the base 60 approximation

1 1)? 1\° 1\* 1\’ 1\°
1422 — 7= 42 | — 33| = 4 = 40 | —
() (m) (@) @) @) (&)
as a root of the equation
z® + 22° + 10z = 20.

How accurate was his approximation?

SOLUTION: The decimal equivalent of Fibonacci’s base 60 approximation is 1.3688081078532, and
Newton’s Method gives 1.36880810782137 with a tolerance of 10~'6. So Fibonacci’s answer was
correct to within 3.2 x 107!, This is the most accurate approximation to an irrational root of a cubic
polynomial that is known to exist, at least in Europe, before the sixteenth century. Fibonacci probably
learned the technique for approximating this root from the writings of the great Persian poet and
mathematician Omar Khayyam.
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