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Prefa
eThis Student SolutionsManual and StudyGuide forNumeri
al Analysis, Ninth Edition, by Burden and Faires
ontains representative exer
ises that have been worked out in detail for all the te
hniques dis
ussed in thebook. Parti
ular attention was paid to ensure that the exer
ises solved in the Guide are those requiring insightinto the theory and methods dis
ussed in the book. Although the answers to the odd exer
ises are also in theba
k of the book, the results listed in this Study Guide generally go well beyond those in the book.For this edition we have added a number of exer
ises to the text that involve the use of a 
omputer algebrasystem (CAS). We 
hose Maple as our standard CAS, be
ause their Numeri
alAnalysis pa
kage parallelsthe algorithms in this book. However, any of the 
ommon 
omputer algebra systems, su
h Mathemati
a,MATLAB, and the publi
 domain system, Sage, 
an be used with satisfa
tion. In our re
ent tea
hing of the
ourse we have found that students understood the 
on
epts better when they worked through the algorithmsstep-by-step, but let a 
omputer algebra system do the tedious 
omputation.It has been our pra
ti
e to in
lude stru
tured algorithms in our Numeri
al Analysis book for all thete
hniques dis
ussed in the text. The algorithms are given in a form that 
an be 
oded in any appropriateprogramming language, by students with even a minimal amount of programming expertise.At the website for the book,http://www.math.ysu.edu/∼faires/Numeri
al-Analysis/you will �nd 
ode for all the algorithms written in the programming languages FORTRAN, Pas
al, C, Java.You will also �nd 
ode in the form of worksheets for the 
omputer algebra systems, Maple, MATLAB, andMathemati
a. For this edition we have rewritten all the Maple programs to re�e
t the Numeri
alAnalysispa
kage and the numerous 
hanges that have been made to this system.The website 
ontains additional information about the book, and will be updated regularly to re�e
t anymodi�
ations that might be made. For example, we will pla
e there any errata we are aware of, as well asresponses to questions from users of the book 
on
erning interpretations of the exer
ises and appropriateappli
ations of the te
hniques.We hope our Guide helps you with your study of Numeri
al Analysis. If you have any suggestions forimprovements that 
an be in
orporated into future editions of the book or the supplements, we would bemost grateful to re
eive your 
omments. We 
an be most easily 
onta
ted by ele
troni
 mail at the addresseslisted below.Youngstown State University Ri
hard L. Burdenburden�math.ysu.eduAugust 14, 2010 J. Douglas Fairesfaires�math.ysu.eduvii



viii Prefa
e



Mathemati
al PreliminariesExer
ise Set 1.1, page 141. d. Show that the equation x− (lnx)x = 0 has at least one solution in the interval [4, 5].SOLUTION: It is not possible to algebrai
ally solve for the solution x, but this is not required in theproblem, we must show only that a solution exists. Let
f(x) = x− (lnx)x = x− exp(x(ln(lnx))).Sin
e f is 
ontinuous on [4, 5] with f(4) ≈ 0.3066 and f(5) ≈ −5.799, the Intermediate ValueTheorem 1.11 implies that a number x must exist in (4, 5) with 0 = f(x) = x− (lnx)x.2. 
. Find intervals that 
ontain a solution to the equation x3 − 2x2 − 4x+ 3 = 0.SOLUTION: Let f(x) = x3 − 2x2 − 4x+ 3. The 
riti
al points of f o

ur when

0 = f ′(x) = 3x2 − 4x− 4 = (3x+ 2)(x− 2);that is, when x = − 2
3 and x = 2. Relative maximum and minimum values of f 
an o

ur only atthese values. There are at most three solutions to f(x) = 0, be
ause f(x) is a polynomial of degreethree. Sin
e f(−2) = −5 and f (− 2

3

)

≈ 4.48; f(0) = 3 and f(1) = −2; and f(2) = −5 and
f(4) = 19; solutions lie in the intervals [−2,−2/3], [0, 1], and [2, 4].4. a. Find max

0≤x≤1
|f(x)| when f(x) = (2− ex + 2x) /3.SOLUTION: First note that f ′(x) = (−ex + 2) /3, so the only 
riti
al point of f o

urs at x = ln 2,whi
h lies in the interval [0, 1]. The maximum for |f(x)| must 
onsequently be

max{|f(0)|, |f(ln 2)|, |f(1)|} = max{1/3, (2 ln2)/3, (4− e)/3} = (2 ln 2)/3.5. Use the Intermediate Value Theorem 1.11 and Rolle's Theorem 1.7 to show that the graph of
f(x) = x3 + 2x+ k 
rosses the x-axis exa
tly on
e, regardless of the value of the 
onstant k.SOLUTION: For x < 0,we have f(x) < 2x+ k < 0, provided that x < − 1

2k. Similarly, for x > 0,we have f(x) > 2x+ k > 0, provided that x > − 1
2k. By Theorem 1.11, there exists a number c with

f(c) = 0.If f(c) = 0 and f(c′) = 0 for some c′ 6= c, then by Theorem 1.7, there exists a number p between cand c′ with f ′(p) = 0. However, f ′(x) = 3x2 + 2 > 0 for all x. This gives a 
ontradi
tion to thestatement that f(c) = 0 and f(c′) = 0 for some c′ 6= c. Hen
e there is exa
tly one number c with
f(c) = 0. 1



2 Exer
ise Set 1.19. Find the se
ond Taylor polynomial for f(x) = ex cosx about x0 = 0, and:a. Use P2(0.5) to approximate f(0.5), �nd an upper bound for |f(0.5)− P2(0.5)|, and 
ompare thisto the a
tual error.b. Find a bound for the error |f(x)− P2(x)|, for x in [0, 1].
. Approximate ∫ 1

0

f(x) dx using ∫ 1

0

P2(x) dx.d. Find an upper bound for the error in part (
).SOLUTION: Sin
e
f ′(x) = ex(cosx− sinx), f ′′(x) = −2ex(sinx), and f ′′′(x) = −2ex(sinx+ cosx),we have f(0) = 1, f ′(0) = 1, and f ′′(0) = 0. So

P2(x) = 1 + x and R2(x) =
−2eξ(sin ξ + cos ξ)

3!
x3.a. We have P2(0.5) = 1 + 0.5 = 1.5 and

|f(0.5)− P2(0.5)| ≤ max
ξ∈[0.0.5]

∣

∣

∣

∣

−2eξ(sin ξ + cos ξ)

3!
(0.5)2

∣

∣

∣

∣

≤ 1

3
(0.5)2 max

ξ∈[0,0.5]
|eξ(sin ξ + cos ξ)|.To maximize this quantity on [0, 0.5], �rst note thatDxe

x(sinx+ cosx) = 2ex cosx > 0, for all x in
[0, 0.5]. This implies that the maximum and minimum values of ex(sinx+ cosx) on [0, 0.5] o

ur atthe endpoints of the interval, and

e0(sin 0 + cos 0) = 1 < e0.5(sin 0.5 + cos 0.5) ≈ 2.24.Hen
e
|f(0.5)− P2(0.5)| ≤

1

3
(0.5)3(2.24) ≈ 0.0932.b. A similar analysis to that in part (a) gives, for all x ∈ [0, 1],

|f(x)− P2(x)| ≤
1

3
(1.0)3e1(sin 1 + cos 1) ≈ 1.252.
.

∫ 1

0

f(x) dx ≈
∫ 1

0

1 + x dx =

[

x+
x2

2

]1

0

=
3

2
.d. From part (b),

∫ 1

0

|R2(x)| dx ≤
∫ 1

0

1

3
e1(cos 1 + sin 1)x3 dx =

∫ 1

0

1.252x3 dx = 0.313.Sin
e
∫ 1

0

ex cosx dx =

[

ex

2
(cosx+ sinx)

]1

0

=
e

2
(cos 1 + sin 1)− 1

2
(1 + 0) ≈ 1.378,the a
tual error is |1.378− 1.5| ≈ 0.12.



Mathemati
al Preliminaries 314. Use the error term of a Taylor polynomial to estimate the error involved in using sinx ≈ x toapproximate sin 1◦.SOLUTION: First we need to 
onvert the degree measure for the sine fun
tion to radians. We have
180◦ = π radians, so 1◦ = π

180 radians. Sin
e f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, and
f ′′′(x) = − cosx, we have f(0) = 0, f ′(0) = 1, and f ′′(0) = 0. The approximation sinx ≈ x isgiven by f(x) ≈ P2(x) and R2(x) = − cos ξ

3! x
3. If we use the bound | cos ξ| ≤ 1, then

∣

∣

∣sin
( π

180

)

− π

180

∣

∣

∣ =
∣

∣

∣R2

( π

180

)∣

∣

∣ =

∣

∣

∣

∣

− cos ξ

3!

( π

180

)3
∣

∣

∣

∣

≤ 8.86× 10−7.16. Let f(x) = ex/2 sin x
3 .a. Use Maple to determine the third Ma
laurin polynomial P3(x).b. Findf (4)(x) and bound the error |f(x)− P3(x)| on [0, 1].SOLUTION: a. De�ne f(x) by

f := exp (x2 ) · sin (x3 )
f := e

(1/2)x sin

(

1

3
x

)Then �nd the �rst three terms of the Taylor series with
g := taylor(f, x = 0, 4)

g :=
1

3
x+

1

6
x2 +

23

648
x3 +O

(

x4
)Extra
t the third Ma
laurin polynomial with

p3 := 
onvert(g, polynom)
p3 :=

1

3
x+

1

6
x2 +

23

648
x3b. Determine the fourth derivative.

f4 := diff(f, x, x, x, x)
f4 := − 119

1296
e
(1/2x) sin

(

1

3
x

)

+
5

54
e
(1/2x) cos

(

1

3
x

)Find the �fth derivative.
f5 := diff(f4, x)

f5 := − 199

2592
e
(1/2x) sin

(

1

3
x

)

+
61

3888
e
(1/2x) cos

(

1

3
x

)See if the fourth derivative has any 
riti
al points in [0, 1].
p := fsolve(f5 = 0, x, 0..1)

p := .6047389076The extreme values of the fourth derivative will o

ur at x = 0, 1, or p.



4 Exer
ise Set 1.1
c1 := evalf(subs(x = p, f4))

c1 := .09787176213

c2 := evalf(subs(x = 0, f4))

c2 := .09259259259

c3 := evalf(subs(x = 1, f4))

c3 := .09472344463The maximum absolute value of f (4)(x) is c1 and the error is given byerror := c1/24 error := .00407799008924. In Example 3 it is stated that x we have | sinx| ≤ |x|. Use the following to verify this statement.a. Show that for all x ≥ 0 the fun
tion f(x) = x− sinx is non-de
reasing, whi
h implies that
sinx ≤ x with equality only when x = 0.b. Use the fa
t that the sine fun
tion is odd to rea
h the 
on
lusion.SOLUTION: First observe that for f(x) = x− sinx we have f ′(x) = 1− cosx ≥ 0, be
ause

−1 ≤ cosx ≤ 1 for all values of x. Also, the statement 
learly holds when |x| ≥ π, be
ause
| sinx| ≤ 1.a. The observation implies that f(x) is non-de
reasing for all values of x, and in parti
ular that
f(x) > f(0) = 0 when x > 0. Hen
e for x ≥ 0, we have x ≥ sinx, and when 0 ≤ x ≤ π, we have
| sinx| = sinx ≤ x = |x|.b.When −π < x < 0, we have π ≥ −x > 0. Sin
e sinx is an odd fun
tion, the fa
t (from part (a))that sin(−x) ≤ (−x) implies that | sinx| = − sinx ≤ −x = |x|.As a 
onsequen
e, for all real numbers x we have | sinx| ≤ |x|.28. Suppose f ∈ C[a, b], and that x1 and x2 are in [a, b].a. Show that a number ξ exists between x1 and x2 with

f(ξ) =
f(x1) + f(x2)

2
=

1

2
f(x1) +

1

2
f(x2).b. Suppose that c1 and c2 are positive 
onstants. Show that a number ξ exists between x1 and x2with

f(ξ) =
c1f(x1) + c2f(x2)

c1 + c2
.
. Give an example to show that the result in part (b) does not ne
essarily hold when c1 and c2have opposite signs with c1 6= −c2.SOLUTION:a. The number

1

2
(f(x1) + f(x2))



Mathemati
al Preliminaries 5is the average of f(x1) and f(x2), so it lies between these two values of f . By the Intermediate ValueTheorem 1.11 there exist a number ξ between x1 and x2 with
f(ξ) =

1

2
(f(x1) + f(x2)) =

1

2
f(x1) +

1

2
f(x2).b. Letm = min{f(x1), f(x2)} andM = max{f(x1), f(x2)}. Thenm ≤ f(x1) ≤M and

m ≤ f(x2) ≤M, so
c1m ≤ c1f(x1) ≤ c1M and c2m ≤ c2f(x2) ≤ c2M.Thus

(c1 + c2)m ≤ c1f(x1) + c2f(x2) ≤ (c1 + c2)Mand
m ≤ c1f(x1) + c2f(x2)

c1 + c2
≤M.By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x1 and x2, there existsa number ξ between x1 and x2 for whi
h

f(ξ) =
c1f(x1) + c2f(x2)

c1 + c2
.
. Let f(x) = x2 + 1, x1 = 0, x2 = 1, c1 = 2, and c2 = −1. Then f(x) > 0 for all values of x, but

c1f(x1) + c2f(x2)

c1 + c2
=

2(1)− 1(2)

2− 1
= 0.Exer
ise Set 1.2, page 282. 
. Find the largest interval in whi
h p∗ must lie to approximate√2 with relative error at most 10−4.SOLUTION: We need

∣

∣p∗ −
√
2
∣

∣

∣

∣

√
2
∣

∣

≤ 10−4, so ∣

∣

∣p∗ −
√
2
∣

∣

∣ ≤
√
2× 10−4;that is,

−
√
2× 10−4 ≤ p∗ −

√
2 ≤

√
2× 10−4.This implies that p∗ must be in the interval (√2(0.9999),

√
2(1.0001)

)

.5. e. Use three-digit rounding arithmeti
 to 
ompute
13
14 − 6

7

2e− 5.4
,and determine the absolute and relative errors.SOLUTION: Using three-digit rounding arithmeti
 gives 13

14 = 0.929, 6
7 = 0.857, and e = 2.72. So

13

14
− 6

7
= 0.0720 and 2e− 5.4 = 5.44− 5.40 = 0.0400.



6 Exer
ise Set 1.2Hen
e
13
14 − 6

7

2e− 5.4
=

0.0720

0.0400
= 1.80.The 
orre
t value is approximately 1.954, so the absolute and relative errors to three digits are

|1.80− 1.954| = 0.154 and |1.80− 1.954|
1.954

= 0.0788,respe
tively.7. e. Repeat Exer
ise 5(e) using three-digit 
hopping arithmeti
.SOLUTION: Using three-digit 
hopping arithmeti
 gives 13
14 = 0.928, 6

7 = 0.857, and e = 2.71. So
13

14
− 6

7
= 0.0710 and 2e− 5.4 = 5.42− 5.40 = 0.0200.Hen
e

13
14 − 6

7

2e− 5.4
=

0.0710

0.0200
= 3.55.The 
orre
t value is approximately 1.954, so the absolute and relative errors to three digits are

|3.55− 1.954| = 1.60, and |3.55− 1.954|
1.954

= 0.817,respe
tively. The results in Exer
ise 5(e) were 
onsiderably better.9. a. Use the �rst three terms of the Ma
laurin series for the ar
tangent fun
tion to approximate
π = 4

[

arctan 1
2 + arctan 1

3

], and determine the absolute and relative errors.SOLUTION: Let P (x) = x− 1
3x

3 + 1
5x

5. Then P ( 12) = 0.464583 and P ( 13) = 0.3218107, so
π = 4

[

arctan
1

2
+ arctan

1

3

]

≈ 3.145576.The absolute and relative errors are, respe
tively,
|π − 3.145576| ≈ 3.983× 10−3 and |π − 3.145576|

|π| ≈ 1.268× 10−3.12. Let
f(x) =

ex − e−x

x
.a. Find limx→0 f(x).b. Use three-digit rounding arithmeti
 to evaluate f(0.1).
. Repla
e ea
h exponential fun
tion with its third Ma
laurin polynomial and repeat part (b).SOLUTION: a. Sin
e limx→0 e

x − e−x = 1− 1 = 0 and limx→0 x = 0, we 
an use L'HospitalsRule to give
lim
x→0

ex − e−x

x
= lim

x→0

ex + e−x

1
=

1 + 1

1
= 2.



Mathemati
al Preliminaries 7b.With three-digit rounding arithmeti
 we have e0.100 = 1.11 and e−0.100 = 0.905, so
f(0.100) =

1.11− 0.905

0.100
=

0.205

0.100
= 2.05.
. The third Ma
laurin polynomials give

ex ≈ 1 + x+
1

2
x2 +

1

6
x3 and e−x ≈ 1− x+

1

2
x2 − 1

6
x3,so

f(x) ≈
(

1 + x+ 1
2x

2 + 1
6x

3
)

−
(

1− x+ 1
2x

2 − 1
6x

3
)

x
=

2x+ 1
3x

3

x
= 2 +

1

3
x2.Thus, with three-digit rounding, we have

f(0.100) ≈ 2 +
1

3
(0.100)2 = 2+ (0.333)(0.001) = 2.00 + 0.000333 = 2.00.15. 
. Find the de
imal equivalent of the �oating-point ma
hine number

0 01111111111 0101001100000000000000000000000000000000000000000000.SOLUTION: This binary ma
hine number is the de
imal number
+ 21023−1023

(

1 +

(

1

2

)2

+

(

1

2

)4

+

(

1

2

)7

+

(

1

2

)8
)

= 20
(

1 +
1

4
+

1

16
+

1

128
+

1

256

)

= 1 +
83

256
= 1.32421875.16. 
. Find the de
imal equivalents of the next largest and next smallest �oating-point ma
hine number to

0 01111111111 0101001100000000000000000000000000000000000000000000.SOLUTION: The next smallest ma
hine number is
0 01111111111 0101001011111111111111111111111111111111111111111111

=1.32421875− 21023−1023
(

2−52
)

=1.3242187499999997779553950749686919152736663818359375,and next largest ma
hine number is
0 01111111111 0101001100000000000000000000000000000000000000000001

=1.32421875+ 21023−1023
(

2−52
)

=1.3242187500000002220446049250313080847263336181640625.21. a. Show that the polynomial nesting te
hnique 
an be used to evaluate
f(x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.



8 Exer
ise Set 1.2b. Use three-digit rounding arithmeti
 and the formula given in the statement of part (a) to evaluate
f(1.53).
. Redo the 
al
ulations in part (b) using the nesting form of f(x) that was found in part (a).d. Compare the approximations in parts (b) and (
).SOLUTION: a. Sin
e enx = (ex)

n, we 
an write
f(x) = ((((1.01)ex − 4.62) ex − 3.11) ex + 12.2) ex − 1.99.b. Using e1.53 = 4.62 and three-digit rounding gives e2(1.53) = (4.62)2 = 21.3,

e3(1.53) = (4.62)2(4.62) = (21.3)(4.62) = 98.4, and e4(1.53) = (98.4)(4.62) = 455. So
f(1.53) = 1.01(455)− 4.62(98.4)− 3.11(21.3) + 12.2(4.62)− 1.99

= 460− 455− 66.2 + 56.4− 1.99

= 5.00− 66.2 + 56.4− 1.99

= −61.2 + 56.4− 1.99 = −4.80− 1.99 = −6.79.
.We have
f(1.53) = (((1.01)4.62− 4.62)4.62− 3.11)4.62 + 12.2)4.62− 1.99

= (((4.67− 4.62)4.62− 3.11)4.62 + 12.2)4.62− 1.99

= ((0.231− 3.11)4.62 + 12.2)4.62− 1.99

= (−13.3 + 12.2)4.62− 1.99 = −7.07.d. The exa
t result is 7.61, so the absolute errors in parts (b) and (
) are, respe
tively,
| − 6.79 + 7.61| = 0.82 and | − 7.07 + 7.61| = 0.54. The relative errors are, respe
tively, 0.108 and
0.0710.24. Suppose that fl(y) is a k-digit rounding approximation to y. Show that

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

≤ 0.5× 10−k+1.SOLUTION: We will 
onsider the solution in two 
ases, �rst when dk+1 ≤ 5, and then when
dk+1 > 5.When dk+1 ≤ 5, we have

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

=
0.dk+1 . . .× 10n−k

0.d1 . . .× 10n
≤ 0.5× 10−k

0.1
= 0.5× 10−k+1.When dk+1 > 5, we have

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

=
(1− 0.dk+1 . . .)× 10n−k

0.d1 . . .× 10n
<

(1− 0.5)× 10−k

0.1
= 0.5× 10−k+1.Hen
e the inequality holds in all situations.



Mathemati
al Preliminaries 928. Show that both sets of data given in the opening appli
ation for this 
hapter 
an give values of T thatare 
onsistent with the ideal gas law.SOLUTION: For the initial data, we have
0.995 ≤ P ≤ 1.005, 0.0995 ≤ V ≤ 0.1005,

0.082055 ≤ R ≤ 0.082065, and 0.004195 ≤ N ≤ 0.004205.This implies that
287.61 ≤ T ≤ 293.42.Sin
e 15◦ Celsius = 288.16 kelvin, we are within the bound. When P is doubled and V is halved,

1.99 ≤ P ≤ 2.01 and 0.0497 ≤ V ≤ 0.0503,so
286.61 ≤ T ≤ 293.72.Sin
e 19◦ Celsius = 292.16 kelvin, we are again within the bound. In either 
ase it is possible that thea
tual temperature is 290.15 kelvin = 17◦ Celsius.Exer
ise Set 1.3, page 393. a. Determine the number n of terms of the series

arctanx = lim
n→∞

Pn(x) =
∞
∑

i=1

(−1)i+1 x2i−1

(2i− 1)that are required to ensure that |4Pn(1)− π| < 10−3.b. How many terms are required to ensure the 10−10 a

ura
y needed for an approximation to π?SOLUTION: a. Sin
e the terms of the series
π = 4 arctan1 = 4

∞
∑

i=1

(−1)i+1 1

2i− 1alternate in sign, the error produ
ed by trun
ating the series at any term is less than the magnitude ofthe next term. To ensure signi�
ant a

ura
y, we need to 
hoose n so that
4

2(n+ 1)− 1
< 10−3 or 4000 < 2n+ 1.So n ≥ 2000.b. In this 
ase, we need

4

2(n+ 1)− 1
< 10−10 or n > 20,000,000,000.Clearly, a more rapidly 
onvergent method is needed for this approximation.



10 Exer
ise Set 1.35. Another formula for 
omputing π 
an be dedu
ed from the identity
π

4
= 4 arctan

1

5
− arctan

1

239
.Determine the number of terms that must be summed to ensure an approximation to π to within 10−3.SOLUTION: The identity implies that

π = 4

∞
∑

i=1

(−1)i+1 1

52i−1(2i− 1)
−

∞
∑

i=1

(−1)i+1 1

2392i−1(2i− 1)The se
ond sum is mu
h smaller than the �rst sum. So we need to determine the minimal value of iso that the i+ 1st term of the �rst sum is less than 10−3. We have
i := 1 :

4

51(1)
=

4

5
, i = 2 :

4

53(3)
=

4

375
and i = 3 :

4

55(5)
=

4

15625
= 2.56× 10−4.So 3 terms are suf�
ient.8. a. How many 
al
ulations are needed to determine a sum of the form

n
∑

i=1

i
∑

j=1

aibj?b. Re-express the series in a way that will redu
e the number of 
al
ulations needed to determine thissum.SOLUTION: a. For ea
h i, the inner sum∑i
j=1 aibj requires i multipli
ations and i− 1 additions,for a total of

n
∑

i=1

i =
n(n+ 1)

2
multipli
ations and n

∑

i=1

i− 1 =
n(n+ 1)

2
− n additions.On
e the n inner sums are 
omputed, n− 1 additions are required for the �nal sum.The �nal total is:

n(n+ 1)

2
multipli
ations and (n+ 2)(n− 1)

2
additions.b. By rewriting the sum as

n
∑

i=1

i
∑

j=1

aibj =
n
∑

i=1

ai

i
∑

j=1

bj,we 
an signi�
antly redu
e the amount of 
al
ulation. For ea
h i, we now need i− 1 additions to sum
bj's for a total of

n
∑

i=1

i − 1 =
n(n+ 1)

2
− n additions.On
e the bj's are summed, we need n multipli
ations by the ai's, followed by n− 1 additions of theprodu
ts.The total additions by this method is still 1

2 (n+ 2)(n− 1), but the number of multipli
ations hasbeen redu
ed from 1
2n(n+ 1) to n.



Mathemati
al Preliminaries 1110. Devise an algorithm to 
ompute the real roots of a quadrati
 equation in the most ef�
ient manner.SOLUTION: The following algorithm uses the most effe
tive formula for 
omputing the roots of aquadrati
 equation.INPUT A, B, C.OUTPUT x1, x2.Step 1 If A = 0 then if B = 0 then OUTPUT (`NO SOLUTIONS');STOP.else set x1 = −C/B;OUTPUT (`ONE SOLUTION',x1);STOP.Step 2 Set D = B2 − 4AC.Step 3 IfD = 0 then set x1 = −B/(2A);OUTPUT (`MULTIPLE ROOTS', x1);STOP.Step 4 IfD < 0 then set
b =

√
−D/(2A);

a = −B/(2A);OUTPUT (`COMPLEX CONJUGATE ROOTS');
x1 = a+ bi;
x2 = a− bi;OUTPUT (x1, x2);STOP.Step 5 If B ≥ 0 then set
d = B +

√
D;

x1 = −2C/d;
x2 = −d/(2A)else set
d = −B +

√
D;

x1 = d/(2A);
x2 = 2C/d.Step 6 OUTPUT (x1, x2);STOP.15. Suppose that as x approa
hes zero,

F1(x) = L1 +O (xα) and F2(x) = L2 +O
(

xβ
)

.Let c1 and c2 be nonzero 
onstants, and de�ne
F (x) = c1F1(x) + c2F2(x) and G(x) = F1(c1x) + F2(c2x).Show that if γ = minimum {α, β}, then as x approa
hes zero,a. F (x) = c1L1 + c2L2 +O (xγ)



12 Exer
ise Set 1.3b. G(x) = L1 + L2 +O (xγ)SOLUTION: Suppose for suf�
iently small |x| we have positive 
onstants k1 and k2 independent of
x, for whi
h

|F1(x) − L1| ≤ K1|x|α and |F2(x) − L2| ≤ K2|x|β .Let c = max (|c1|, |c2|, 1),K = max (K1, K2), and δ = max (α, β).a.We have
|F (x)− c1L1 − c2L2| =|c1(F1(x)− L1) + c2(F2(x)− L2)|

≤|c1|K1|x|α + |c2|K2|x|β

≤cK
(

|x|α + |x|β
)

≤cK|x|γ
(

1 + |x|δ−γ
)

≤ K|x|γ ,for suf�
iently small |x|. Thus, F (x) = c1L1 + c2L2 +O (xγ).b.We have
|G(x) − L1 − L2| =|F1(c1x) + F2(c2x)− L1 − L2|

≤K1|c1x|α +K2|c2x|β

≤Kcδ
(

|x|α + |x|β
)

≤Kcδ|x|γ
(

1 + |x|δ−γ
)

≤ K ′′|x|γ ,for suf�
iently small |x|. Thus, G(x) = L1 + L2 +O (xγ).16. Consider the Fibona

i sequen
e de�ned by F0 = 1, F1 = 1, and Fn+2 = Fn+1 + Fn, if n ≥ 0.De�ne xn = Fn+1/Fn. Assuming that limn→∞ xn = x 
onverges, show that the limit is the goldenratio: x =
(

1 +
√
5
)

/2.SOLUTION: Sin
e
lim
n→∞

xn = lim
n→∞

xn+1 = x and xn+1 = 1 +
1

xn
,we have

x = 1 +
1

x
, whi
h implies that x2 − x− 1 = 0.The only positive solution to this quadrati
 equation is x =

(

1 +
√
5
)

/2.17. The Fibona

i sequen
e also satis�es the equation
Fn ≡ F̃n =

1√
5

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]

.a.Write a Maple pro
edure to 
al
ulate F100.b. Use Maple with the default value of Digits followed by evalf to 
al
ulate F̃100.
.Why is the result from part (a) more a

urate than the result from part (b)?d.Why is the result from part (b) obtained more rapidly than the result from part (a)?e. What results when you use the 
ommand simplify instead of evalf to 
ompute F̃100?



Mathemati
al Preliminaries 13SOLUTION: a. To save spa
e we will show the Maple output for ea
h step in one line. Maple wouldprodu
e this output on separate lines. The pro
edure for 
al
ulating the terms of the sequen
e are:
n := 98; f := 1; s := 1

n := 98 f := 1 s := 1for i from 1 to n do
l := f + s; f := s; s := l; od :

l :=2 f := 1 s := 2

l :=3 f := 2 s := 3...
l :=218922995834555169026 f := 135301852344706746049 s := 218922995834555169026

l :=354224848179261915075b.We have
F100 :=

1sqrt(5) (( (1 + sqrt(5)
2

)100

−
(

1− sqrt(5)
2

)100
)

F100 :=
1√
5

(

(

1

2
+

1

2

√
5

)100

−
(

1

2
− 1

2

√
5

)100
)evalf(F100)

0.3542248538× 1021
. The result in part (a) is 
omputed using exa
t integer arithmeti
, and the result in part (b) is
omputed using ten-digit rounding arithmeti
.d. The result in part (a) required traversing a loop 98 times.e. The result is the same as the result in part (a).



14 Exer
ise Set 1.3



Solutions of Equations of One VariableExer
ise Set 2.1, page 541. Use the Bise
tion method to �nd p3 for f(x) = √
x− cosx on [0, 1].SOLUTION: Using the Bise
tion method gives a1 = 0 and b1 = 1, so f(a1) = −1 and

f(b1) = 0.45970. We have
p1 =

1

2
(a1 + b1) =

1

2
and f(p1) = −0.17048 < 0.Sin
e f(a1) < 0 and f(p1) < 0, we assign a2 = p1 = 0.5 and b2 = b1 = 1. Thus

f(a2) = −0.17048 < 0, f(b2) = 0.45970 > 0, and p2 =
1

2
(a2 + b2) = 0.75.Sin
e f(p2) = 0.13434 > 0, we have a3 = 0.5; b3 = p3 = 0.75 so that

p3 =
1

2
(a3 + b3) = 0.625.2. a. Let f(x) = 3(x+1)

(

x− 1
2

)

(x− 1). Use the Bise
tion method on the interval [−2, 1.5] to �nd p3.SOLUTION: Sin
e
f(x) = 3(x+ 1)

(

x− 1

2

)

(x− 1),we have the following sign graph for f(x):
x0 1 32

0

00 0

2

2

2 2 22 2 2 1 1

2

1 1 1

x        

2x      1

22 21

(x) f 

2 22

1

2

22

22

02 2 112 2 1 1

1

1 1 1 11 1 1 1 1 1x 1 1 1 11 1

11 1 1 1

02 2 2 22 2 2

2

2

2 2222 2

1 11 11 11 1 12 22 1

1 11 1 1

1 11 1 1

1 11 1 1

1
22

1
22

2

 1Thus, a1 = −2, with f(a1) < 0, and b1 = 1.5, with f(b1) > 0. Sin
e p1 = − 1
4 , we have f(p1) > 0.We assign a2 = −2, with f(a2) < 0, and b2 = − 1

4 , with f(b2) > 0. Thus, p2 = −1.125 and
f(p2) < 0. Hen
e, we assign a3 = p2 = −1.125 and b3 = −0.25. Then p3 = −0.6875.15



16 Exer
ise Set 2.18. a. Sket
h the graphs of y = x and y = tanx.b. Use the Bise
tion method to �nd an approximation to within 10−5 to the �rst positive value of xwith x = tanx.SOLUTION:a. The graphs of y = x and y = tanx are shown in the �gure. From the graph it appears that thegraphs 
ross near x = 4.5.
10

210

y

  5

10 x

y = x

y = tan xb. Be
ause g(x) = x− tanx has
g(4.4) ≈ 1.303 > 0 and g(4.6) ≈ −4.260 < 0,the fa
t that g is 
ontinuous on [4.4, 4.6] gives us a reasonable interval to start the bise
tion pro
ess.Using Algorithm 2.1 gives p16 = 4.4934143, whi
h is a

urate to within 10−5.11. Let f(x) = (x+ 2)(x+ 1)x(x − 1)3(x− 2). To whi
h zero of f does the Bise
tion method
onverge for the following intervals?a. [−3, 2.5]
. [−1.75, 1.5]SOLUTION: Sin
e

f(x) = (x + 2)(x+ 1)x(x− 1)3(x− 2),we have the following sign graph for f(x).
x0 1 3

3

2

0

00 0

2

2

2 2 22 2 2 2 2 1 12 2 1 1 1

x      1

2x      2

23 22 21

(x) f 

2 22 1

0

2 2 12 22 22 2 1 1 1 1 11 1 1 1 1 1x   1 1

0

2 2

11

2

2 22

2 22

2 22

2 22

2

2

2

2

2

2

2 22

1 1 1 1 1 11 1 1 1 1 1x 1 2 1 1111 1 1 1

02 2 112 2 1 1 1 1 1 11 1 1 1 1 1x 1 1 1 11 1

0

0

2 2 2 22 2 2 2

2

1 12 1 11 11 1 12 22 1

1 11 1 1 12

2

2 22 0  2 21 1 1 11 1

( )

a. The interval [−3, 2.5] 
ontains all 5 zeros of f . For a1 = −3, with f(a1) < 0, and b1 = 2.5, with
f(b1) > 0, we have p1 = (−3 + 2.5)/2 = −0.25, so f(p1) < 0. Thus we assign a2 = p1 = −0.25,with f(a2) < 0, and b2 = b1 = 2.5, with f(b1) > 0.



Solutions of Equations of One Variable 17Hen
e p2 = (−0.25 + 2.5)/2 = 1.125 and f(p2) < 0. Then we assign a3 = 1.125, with f(a3) < 0,and b3 = 2.5, with f(b3) > 0. Sin
e [1.125, 2.5] 
ontains only the zero 2, the method 
onverges to 2.
. The interval [−1.75, 1.5] 
ontains the zeros −1, 0, 1. For a1 = −1.75, with f(a1) > 0, and
b1 = 1.5, with f(b1) < 0, we have p1 = (−1.75 + 1.5)/2 = −0.125 and f(p1) < 0. Then we assign
a2 = a1 = −1.75, with f(a1) > 0, and b2 = p1 = −0.125, with f(b2) < 0. Sin
e [−1.75,−0.125]
ontains only the zero−1, the method 
onverges to −1.12. Use the Bise
tion Algorithm to �nd an approximation to√3 that is a

urate to within 10−4.SOLUTION: The fun
tion de�ned by f(x) = x2 − 3 has √3 as its only positive zero. Applying theBise
tion method to this fun
tion on the interval [1, 2] gives√3 ≈ p14 = 1.7320. Using a smallerstarting interval would de
rease the number of iterations that are required.14. Use Theorem 2.1 to �nd a bound for the number of iterations needed to approximate a solution to theequation x3 + x− 4 = 0 on the interval [1, 4] to an a

ura
y of 10−3.SOLUTION: First note that the parti
ular equation plays no part in �nding the bound; all that isneeded is the interval and the a

ura
y requirement. To �nd an approximation that is a

urate towithin 10−3, we need to determine the number of iterations n so that

|p− pn| <
b− a

2n
=

4− 1

2n
< 0.001; that is, 3× 103 < 2n.As a 
onsequen
e, a bound for the number of iterations is n ≥ 12. Applying the Bise
tion Algorithmgives p12 = 1.3787.17. De�ne the sequen
e {pn} by pn =

n
∑

k=1

1

k
. Show that lim

n→∞
(pn − pn−1) = 0, even though thesequen
e {pn} diverges.SOLUTION: Sin
e pn − pn−1 = 1/n, we have limn→∞(pn − pn−1) = 0. However, pn is the nthpartial sum of the divergent harmoni
 series. The harmoni
 series is the 
lassi
 example of a serieswhose terms go to zero, but not rapidly enough to produ
e a 
onvergent series. There are many proofsof the divergen
e of this series, any 
al
ulus text should give at least two. One proof will simplyanalyze the partial sums of the series and another is based on the Integral Test.The point of the problem is not the fa
t that this parti
ular sequen
e diverges, it is that a test for anapproximate solution to a root based on the 
ondition that |pn − pn−1| is small should always besuspe
t. Conse
utive terms of a sequen
e might be 
lose to ea
h other, but not suf�
iently 
lose to thea
tual solution you are seeking.19. A trough of water of length L = 10 feet has a 
ross se
tion in the shape of a semi
ir
le with radius

r = 1 foot. When �lled with water to within a distan
e h of the top, the volume V = 12.4 ft3 of thewater is given by the formula
12.4 = 10

[

0.5π − arcsinh− h
(

1− h2
)1/2

]Determine the depth of the water to within 0.01 feet.



18 Exer
ise Set 2.2SOLUTION: Applying the Bise
tion Algorithm on the interval [0, 1] to the fun
tion
f(h) = 12.4− 10

[

0.5π − arcsinh− h
(

1− h2
)1/2

]gives h ≈ p13 = 0.1617, so the depth is r − h ≈ 1− 0.1617 = 0.8383 feet.Exer
ise Set 2.2, page 643. The following methods are proposed to 
ompute 211/3. Rank them in order, based on their apparentspeed of 
onvergen
e, assuming p0 = 1.a. pn =
20pn−1 + 21/p2n−1

21b. pn = pn−1 −
p3n−1 − 21

3p2n−1
. pn = pn−1 −
p4n−1 − 21pn−1

p2n−1 − 21d. pn =

(

21

pn−1

)1/2SOLUTION: a. Sin
e
pn =

20pn−1 + 21/p2n−1

21
, we have g(x) =

20x+ 21/x2

21
=

20

21
x+

1

x2
,and g′(x) = 20

21
− 2

x3
. Thus, g′ (211/3) = 20

21
− 2

21
=

6

7
≈ 0.857.b. Sin
e

pn = pn−1 −
p3n−1 − 21

3p2n−1

, we have g(x) = x− x3 − 21

3x2
= x− 1

3
x+

7

x2
=

2

3
x+

7

x2and g′(x) = 2

3
− 7

x3
. Thus, g′ (211/3) = 2

3
− 1

3
=

1

3
= 0.333.
. Sin
e

pn = pn−1 −
p4n−1 − 21pn−1

p2n−1 − 21
,we have

g(x) = x− x4 − 21x

x2 − 21
=
x3 − 21x− x4 + 21x

x2 − 21
=
x3 − x4

x2 − 21and
g′(x) =

(

x2 − 21
) (

3x2 − 4x3
)

−
(

x3 − x4
)

2x

(x2 − 21)
2 =

3x4 − 63x2 − 4x5 + 84x3 − 2x4 + 2x5

(x2 − 21)
2

=
−2x5 + x4 + 84x3 − 63x2

(x2 − 21)2
.



Solutions of Equations of One Variable 19Thus g′ (211/3) ≈ 5.706 > 1.d. Sin
e
pn =

(

21

pn−1

)1/2

, we have g(x) =

(

21

x

)1/2

=

√
21

x1/2
,and g′(x) = −

√
21

2x3/2
. Thus, g′ (211/3) = −1

2
.The order of 
onvergen
e would likely be (b), (d), (a). Choi
e (
) will not likely 
onverge.9. Use a �xed-point iteration method to determine an approximation to √

3 that is a

urate to within
10−4.SOLUTION: As always with �xed-point iteration, the tri
k is to 
hoose the �xed-point problem thatwill produ
e rapid 
onvergen
e.Re
alling the solution to Exer
ise 12 in Se
tion 2.1, we need to 
onvert the root-�nding problem
f(x) = x2 − 3 into a �xed-point problem. One su

essful solution is to write

0 = x2 − 3 as x =
3

x
,then add x to both sides of the latter equation and divide by 2. This gives g(x) = 0.5

(

x+ 3
x

), and for
p0 = 1.0, we have√3 ≈ p4 = 1.73205.12. 
. Determine a �xed-point fun
tion g and an appropriate interval that produ
es an approximation to apositive solution of 3x2 − ex = 0 that is a

urate to within 10−5.SOLUTION: There are numerous possibilities:For g(x) =√ 1

3e
x on [0, 1] with p0 = 1, we have p12 = 0.910015.For g(x) = ln 3x2 on [3, 4] with p0 = 4, we have p16 = 3.733090.14. Use a �xed-point iteration method to determine a solution a

urate to within 10−4 for x = tanx, for

x in [4, 5].SOLUTION: Using g(x) = tanx and p0 = 4 gives p1 = g(p0) ≈ 1.158, whi
h is not in the interval
[4, 5]. So we need a different �xed-point fun
tion. If we note that x = tanx implies that

1

x
=

1

tanx
and de�ne g(x) = x+

1

tanx
− 1

xwe obtain, again with p0 = 4:
p1 ≈ 4.61369, p2 = 4.49596, p3 = 4.49341 and p4 = 4.49341.Be
ause p3 and p4 agree to �ve de
imal pla
es it is reasonable to assume that these values aresuf�
iently a

urate.18. a. Show that Theorem 2.3 is true if |g′(x)| ≤ k is repla
ed by the statement �g′(x) ≤ k < 1, for all

x ∈ [a, b]�.b. Show that Theorem 2.4 may not hold when |g′(x)| ≤ k is repla
ed by the statement�g′(x) ≤ k < 1, for all x ∈ [a, b]�.



20 Exer
ise Set 2.2SOLUTION: a. The proof of existen
e is un
hanged. For uniqueness, suppose p and q are �xedpoints in [a, b] with p 6= q. By the Mean Value Theorem, a number ξ in (a, b) exists with
p− q = g(p)− g(q) = g′(ξ)(p− q) ≤ k(p− q) < p− q,giving the same 
ontradi
tion as in Theorem 2.3.b. For Theorem 2.4, 
onsider g(x) = 1− x2 on [0, 1]. The fun
tion g has the unique �xed point

p = 1
2

(

−1 +
√
5
)

.With p0 = 0.7, the sequen
e eventually alternates between numbers 
lose to 0and to 1, so there is no 
onvergen
e.19. a. Use Theorem 2.4 to show that the sequen
e
xn =

1

2
xn−1 +

1

xn−1
onverges for any x0 > 0.b. Show that if 0 < x0 <
√
2, then x1 > √

2.
. Show that the sequen
e in (a) 
onverges for every x0 > 0.SOLUTION: a. First let g(x) = x/2 + 1/x. For x 6= 0, we have g′(x) = 1/2− 1/x2. If x > √
2,then 1/x2 < 1/2, so g′(x) > 0. Also, g (√2

)

=
√
2.Suppose, as is the assumption given in part (a), that x0 > √

2. Then
x1 −

√
2 = g(x0)− g

(√
2
)

= g′(ξ)
(

x0 −
√
2
)

,where√2 < ξ < x0. Thus, x1 −√
2 > 0 and x1 > √

2. Further,
x1 =

x0
2

+
1

x0
<
x0
2

+
1√
2
=
x0 +

√
2

2
,and√2 < x1 < x0. By an indu
tive argument, we have

√
2 < xm+1 < xm < . . . < x0.Thus, {xm} is a de
reasing sequen
e that has a lower bound and must therefore 
onverge. Suppose

p = limm→∞ xm. Then
p = lim

m→∞

(

xm−1

2
+

1

xm−1

)

=
p

2
+

1

p
.Thus

p =
p

2
+

1

p
, whi
h implies that p2 = 2,so p = ±

√
2. Sin
e xm >

√
2 for allm, limm→∞ xm =

√
2.b. Consider the situation when 0 < x0 <

√
2, whi
h is the situation in part (b). Then we have

0 <
(

x0 −
√
2
)2

= x20 − 2x0
√
2 + 2,so

2x0
√
2 < x20 + 2 and √

2 <
x0
2

+
1

x0
= x1.
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. To 
omplete the problem, we 
onsider the three possibilities for x0 > 0.Case 1: x0 > √
2, whi
h by part (a) implies that limm→∞ xm =

√
2.Case 2: x0 =

√
2, whi
h implies that xm =

√
2 for allm and that limm→∞ xm =

√
2.Case 3: 0 < x0 <

√
2, whi
h implies that√2 < x1 by part (b). Thus

0 < x0 <
√
2 < xm+1 < xm < . . . < x1 and lim

m→∞
xm =

√
2.In any situation, the sequen
e 
onverges to√2, and rapidly, as we will dis
over in the Se
tion 2.3.24. Suppose that the fun
tion g has a �xed-point at p, that g ∈ C[a, b], and that g′ exists in (a, b). Showthat if |g′(p)| > 1, then the �xed-point sequen
e will fail to 
onverge for any initial 
hoi
e of p0,ex
ept if pn = p for some value of n.SOLUTION: Sin
e g′ is 
ontinuous at p and |g′(p)| > 1, by letting ǫ = |g′(p)| − 1 there exists anumber δ > 0 su
h that

|g′(x)− g′(p)| < ε = |g′(p)| − 1,whenever 0 < |x− p| < δ. Sin
e
|g′(x) − g′(p)| ≥ |g′(p)| − |g′(x)|,for any x satisfying 0 < |x− p| < δ, we have

|g′(x)| ≥ |g′(p)| − |g′(x)− g′(p)| > |g′(p)| − (|g′(p)| − 1) = 1.If p0 is 
hosen so that 0 < |p− p0| < δ, we have by the Mean Value Theorem that
|p1 − p| = |g(p0)− g(p)| = |g′(ξ)||p0 − p|,for some ξ between p0 and p. Thus, 0 < |p− ξ| < δ and

|p1 − p| = |g′(ξ)||p0 − p| > |p0 − p|.This means that when an approximation gets 
lose to p, but is not equal to p, the su

eeding terms ofthe sequen
e move away from p. So the sequen
e 
annot 
onverge to p.Exer
ise Set 2.3, page 751. Let f(x) = x2 − 6 and p0 = 1. Use Newton's method to �nd p2.SOLUTION: Let f(x) = x2 − 6. Then f ′(x) = 2x, and Newton's method be
omes
pn = pn−1 −

f(pn−1)

f ′(pn−1)
= pn−1 −

p2n−1 − 6

2pn−1
.With p0 = 1, we have

p1 = p0 −
p20 − 6

2p0
= 1− 1− 6

2
= 1 + 2.5 = 3.5and

p2 = p1 −
p21 − 6

2p1
= 3.5− 3.52 − 6

2(3.5)
= 2.60714.



22 Exer
ise Set 2.33. Let f(x) = x2 − 6. With p0 = 3 and p1 = 2, �nd p3 for (a) the Se
ant method and (b) the method ofFalse Position.
.Whi
h method gives better results?SOLUTION: The formula for both the Se
ant method and the method of False Position is
pn = pn−1 −

f(pn−1)(pn−1 − pn−2)

f(pn−1)− f(pn−2)
.a. The Se
ant method:With p0 = 3 and p1 = 2, we have f(p0) = 9− 6 = 3 and f(p1) = 4− 6 = −2. The Se
ant methodgives

p2 = p1 −
f(p1)(p1 − p0)

f(p1)− f(p0)
= 2− (−2)(2− 3)

−2− 3
= 2− 2

−5
= 2.4and f(p2) = 2.42 − 6 = −0.24. Then we have

p3 = p2 −
f(p2)(p2 − p1)

f(p2)− f(p1)
= 2.4− (−0.24)(2.4− 2)

(−0.24− (−2)
= 2.4− −0.096

1.76
= 2.45454.b. The method of False Position:With p0 = 3 and p1 = 2, we have f(p0) = 3 and f(p1) = −2. As in the Se
ant method (part (a)),

p2 = 2.4 and f(p2) = −0.24. Sin
e f(p1) < 0 and f(p2) < 0, the method of False Position requiresa reassignment of p1. Then p1 is 
hanged to p0 so that p1 = 3, with f(p1) = 3, and p2 = 2.4, with
f(p2) = −0.24. We 
al
ulate p3 by

p3 = p2 −
f(p2)(p2 − p1)

f(p2)− f(p1)
= 2.4− (−0.24)(2.4− 3)

−0.24− 3
= 2.4− 0.144

−3.24
= 2.44444.
. Sin
e√6 ≈ 2.44949, the a

ura
y of the approximations is the same. Continuing to moreapproximations would show that the Se
ant method is better.5. 
. Apply Newton's method to �nd a solution to x− cosx = 0 in the interval [0, π/2] that is a

urateto within 10−4.SOLUTION: With f(x) = x− cosx, we have f ′(x) = 1 + sinx, and the sequen
e generated byNewton's method is

pn = pn−1 −
pn−1 − cos pn−1

1 + sin pn−1
.For p0 = 0, we have p1 = 1, p2 = 0.75036, p3 = 0.73911, and p4 = 0.73909.7. 
. Apply the Se
ant method to �nd a solution to x− cosx = 0 in the interval [0, π/2] that is a

urateto within 10−4.SOLUTION: The Se
ant method approximations are generated by the sequen
e

pn = pn−1 −
(pn−1 − cos pn−1)(pn−1 − pn−2)

(pn−1 − cos pn−1)− (pn−2 − cos pn−2)
.



Solutions of Equations of One Variable 23Using the endpoints of the intervals as p0 and p1, we have the entries in the following table.
n pn

0 0
1 1.5707963
2 0.6110155
3 0.7232695
4 0.7395671
5 0.7390834
6 0.73908519. 
. Apply the method of False Position to �nd a solution to x− cosx = 0 in the interval [0, π/2] that isa

urate to within 10−4.SOLUTION: The method of False Position approximations are generated using this same formula asin Exer
ise 7, but in
orporates the additional bra
keting test. Using the endpoints of the intervals as

p0 and p1, we have the entries in the following table.
n pn

0 0
1 1.5707963
2 0.6110155
3 0.7232695
4 0.7372659
5 0.7388778
6 0.7390615
7 0.739082513. Apply Newton's method to �nd a solution, a

urate to within 10−4, to the value of x that produ
esthe 
losest point on the graph of y = x2 to the point (1, 0).SOLUTION: The distan
e between an arbitrary point (x, x2) on the graph of y = x2 and the point

(1, 0) is
d(x) =

√

(x − 1)2 + (x2 − 0)2 =
√

x4 + x2 − 2x+ 1.Be
ause a derivative is needed to �nd the 
riti
al points of d, it is easier to work with the square ofthis fun
tion,
f(x) = [d(x)]2 = x4 + x2 − 2x+ 1,whose minimum will o

ur at the same value of x as the minimum of d(x). To minimize f(x) weneed x so that 0 = f ′(x) = 4x3 + 2x− 2.Applying Newton's method to �nd the root of this equation with p0 = 1 gives p5 = 0.589755. Thepoint on the graph of y = x2 that is 
losest to (1, 0) has the approximate 
oordinates

(0.589755, 0.347811).



24 Exer
ise Set 2.316. Use Newton's method to solve for roots of
0 =

1

2
+

1

4
x2 − x sinx− 1

2
cos 2x.SOLUTION: Newton's method with p0 = π

2 gives p15 = 1.895488 and with p0 = 5π gives
p19 = 1.895489. With p0 = 10π, the sequen
e does not 
onverge in 200 iterations.The results do not indi
ate the fast 
onvergen
e usually asso
iated with Newton's method be
ause thefun
tion and its derivative have the same roots. As we approa
h a root, we are dividing by numberswith small magnitude, whi
h in
reases the round-off error.19. Explain why the iteration equation for the Se
ant method should not be used in the algebrai
allyequivalent form

pn =
f(pn−1)pn−2 − f(pn−2)pn−1

f(pn−1)− f(pn−2)
.SOLUTION: This formula in
orporates the subtra
tion of nearly equal numbers in both thenumerator and denominator when pn−1 and pn−2 are nearly equal. The form given in the Se
antAlgorithm subtra
ts a 
orre
tion from a result that should dominate the 
al
ulations. This is alwaysthe preferred approa
h.22. Use Maple to determine how many iterations of Newton's method with p0 = π/4 are needed to �nda root of f(x) = cosx− x to within 10−100.SOLUTION: We �rst de�ne f(x) and f ′(x) with

f := x− > 
os(x) − x
f := x→ cos(x) − xand

fp := x− > (D)(f)(x)
fp := x→ − sin(x)− 1We wish to use 100-digit rounding arithmeti
 so we set

Digits := 100; p0 := Pi/4 Digits := 100

p0 :=
1

4
πfor n from 1 to 7 do

p1 := evalf(p0− f(p0)/fp(p0))

err := abs(p1− p0)

p0 := p1

odThis gives
p7 = .73908513321516064165531208767387340401341175890075746496

56806357732846548835475945993761069317665319,whi
h is a

urate to 10−100.



Solutions of Equations of One Variable 2523. The fun
tion de�ned by f(x) = ln
(

x2 + 1
)

− e0.4x cosπx has an in�nite number of zeros.a. Approximate the only negative zero to within 10−6.b. Approximate the four smallest positive zeros to within 10−6.
. Find an initial approximation for the nth smallest positive zero.d. Approximate the 25th smallest positive zero to within 10−6.SOLUTION: The key to this problem is re
ognizing the behavior of e0.4x. When x is negative, thisterm goes to zero, so f(x) is dominated by ln (x2 + 1
). However, when x is positive, e0.4x dominatesthe 
al
ulations, and f(x) will be zero approximately when this term makes no 
ontribution; that is,when cosπx = 0. This o

urs when x = n/2 for a positive integer n. Using this information todetermine initial approximations produ
es the following results:a.We 
an use p0 = −0.5 to �nd the suf�
iently a

urate p3 = −0.4341431.b.We 
an use: p0 = 0.5 to give p3 = 0.4506567; p0 = 1.5 to give p3 = 1.7447381; p0 = 2.5 to give

p5 = 2.2383198; and p0 = 3.5 to give p4 = 3.7090412.
. In general, a reasonable initial approximation for the nth positive root is n− 0.5.d. Let p0 = 24.5. A suf�
iently a

urate approximation to the 25th smallest positive zero is
p2 = 24.4998870.Graphs for various parts of the region are shown below.
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26. Determine the minimal annual interest rate i at whi
h an amount P = $1500 per month 
an beinvested to a

umulate an amount A = $750, 000 at the end of 20 years based on the annuity dueequation
A =

P

i
[(1 + i)n − 1] .SOLUTION: This is simply a root-�nding problem where the fun
tion is given by

f(i) = A− P

i
[(1 + i)n − 1] = 750000− 1500

(i/12)

[

(1 + i/12)(12)(20) − 1
]

.Noti
e that n and i have been adjusted be
ause the payments are made monthly rather than yearly.The approximate solution to this equation 
an be found by any method in this se
tion. Newton'smethod is a bit 
umbersome for this problem, sin
e the derivative of f is 
ompli
ated. The Se
antmethod would be a likely 
hoi
e. The minimal annual interest is approximately 6.67%.



26 Exer
ise Set 2.328. A drug administered to a patient produ
es a 
on
entration in the blood stream given by
c(t) = Ate−t/3mg/mL, t hours after A units have been administered. The maximum safe
on
entration is 1mg/mL.a.What amount should be inje
ted to rea
h this safe level, and when does this o

ur?b. When should an additional amount be administered, if it is administered when the level drops to0.25mg/mL?
. Assuming 75% of the original amount is administered in the se
ond inje
tion, when should a thirdinje
tion be given?SOLUTION: a. The maximum 
on
entration o

urs when

0 = c′(t) = A

(

1− t

3

)

e−t/3.This happens when t = 3 hours, and sin
e the 
on
entration at this time will be c(3) = 3Ae−1, weneed to administer A = 1
3e units.b.We need to determine t so that

0.25 = c(t) =

(

1

3
e

)

te−t/3.This o

urs when t is 11 hours and 5 minutes; that is, when t = 11.083 hours.
.We need to �nd t so that
0.25 = c(t) =

(

1

3
e

)

te−t/3 + 0.75

(

1

3
e

)

(t− 11.083)e−(t−11.083)/3.This o

urs after 21 hours and 14 minutes.29. Let f(x) = 33x+1 − 7 · 52x.a. Use the Maple 
ommands solve and fsolve to try to �nd all roots of f .b. Plot f(x) to �nd initial approximations to roots of f .
. Use Newton's method to �nd the zeros of f to within 10−16.d. Find the exa
t solutions of f(x) = 0 algebrai
ally.SOLUTION: a. First de�ne the fun
tion by
f := x− > 33x+1 − 7 · 52x

f := x→ 3(3x+1) − 7 52xsolve(f(x) = 0, x)

− ln (3/7)

ln (27/25)fsolve(f(x) = 0, x) fsolve(3(3x+1) − 7 5(2x) = 0, x)The pro
edure solve gives the exa
t solution, and fsolve fails be
ause the negative x-axis is anasymptote for the graph of f(x).



Solutions of Equations of One Variable 27b. Using the Maple 
ommand plot({f(x)}, x = 9.5..11.5) produ
es the following graph.
x 

y 

1   10

10.5

11.511 12

15
x

2   10
15

x

3   10
15

x


. De�ne f ′(x) using
fp := x− > (D)(f)(x)

fp := x→ 3 3(3x+1) ln(3)− 14 5(2x) ln(5)Digits := 18; p0 := 11 Digits := 18

p0 := 11for i from 1 to 5 do
p1 := evalf(p0− f(p0)/fp(p0))

err := abs(p1− p0)

p0 := p1

odThe results are given in the following table.
i pi |pi − pi−1|

1 11.0097380401552503 0.0097380401552503
2 11.0094389359662827 0.0002991041889676
3 11.0094386442684488 0.2916978339 10−6

4 11.0094386442681716 0.2772 10−12

5 11.0094386442681716 0d. We have 33x+1 = 7 · 52x. Taking the natural logarithm of both sides gives
(3x+ 1) ln 3 = ln 7 + 2x ln 5.Thus

3x ln 3− 2x ln 5 = ln 7− ln 3, x(3 ln 3− 2 ln 5) = ln
7

3
,and

x =
ln 7/3

ln 27− ln 25
=

ln 7/3

ln 27/25
= − ln 3/7

ln 27/25
.This agrees with part (a).



28 Exer
ise Set 2.4Exer
ise Set 2.4, page 851. a. Use Newton's method to �nd a solution a

urate to within 10−5 for x2 − 2xe−x + e−2x = 0,where 0 ≤ x ≤ 1.SOLUTION: Sin
e
f(x) = x2 − 2xe−x + e−2x and f ′(x) = 2x− 2e−x + 2xe−x − 2e−2x,the iteration formula is

pn = pn−1 −
f(pn−1)

f ′(pn−1)
= pn−1 −

p2n−1 − 2pn−1e
−pn−1 + e−2pn−1

2pn−1 − 2e−pn−1 + 2pn−1e−pn−1 − 2e−2pn−1
.With p0 = 0.5, we have

p1 = 0.5− (0.01134878)/(−0.3422895) = 0.5331555.Continuing in this manner, p13 = 0.567135 is a

urate to within 10−5.3. a. Repeat Exer
ise 1(a) using the modi�ed Newton-Raphson method des
ribed in Eq. (2.13). Is therean improvement in speed or a

ura
y over Exer
ise 1?SOLUTION: Sin
e
f(x) =x2 − 2xe−x + e−2x,

f ′(x) =2x− 2e−x + 2xe−x − 2e−2x,and
f ′′(x) =2 + 4e−x − 2xe−x + 4e−2x,the iteration formula is

pn = pn−1 −
f(pn−1)f

′(pn−1)

[f ′(pn−1)]2 − f(pn−1)f ′′(pn−1)
.With p0 = 0.5, we have f(p0) = 0.011348781, f ′(p0) = −0.342289542, f ′′(p0) = 5.291109744and

p1 = 0.5− (0.01134878)(−0.342289542)

(−0.342289542)2 − (0.011348781)(5.291109744)
= 0.5680137.Continuing in this manner, p3 = 0.567143 is a

urate to within 10−5, whi
h is 
onsiderably betterthan in Exer
ise 1.6. a. Show that the sequen
e pn = 1/n 
onverges linearly to p = 0, and determine the number of termsrequired to have |pn − p| < 5× 10−2.SOLUTION: First note that lim

n→∞
1

n
= 0. Sin
e

lim
n→∞

|pn+1 − p|
|pn − p| = lim

n→∞
1/(n+ 1)

1/n
= lim

n→∞
n

n+ 1
= 1,the 
onvergen
e is linear. To have |pn − p| < 5× 10−2, we need 1/n < 0.05, whi
h implies that

n > 20.



Solutions of Equations of One Variable 298. Show that:a. The sequen
e pn = 10−2n 
onverges quadrati
ally to zero;b. The sequen
e pn = 10−nk does not 
onverge to zero quadrati
ally, regardless of the size of k > 1.SOLUTION:a. Sin
e
lim
n→∞

|pn+1 − 0|
|pn − 0|2 = lim

n→∞
10−2n+1

(10−2n)
2 = lim

n→∞
10−2n+1

10−2·2n = lim
n→∞

10−2n+1

10−2n+1
= 1,the sequen
e is quadrati
ally 
onvergent.b. For any k > 1,

lim
n→∞

|pn+1 − 0|
|pn − 0|2 = lim

n→∞
10−(n+1)k

(

10−nk
)2 = lim

n→∞
10−(n+1)k

10−2nk
= lim

n→∞
102n

k−(n+1)kdiverges. So the sequen
e pn = 10−nk does not 
onverge quadrati
ally for any k > 1.10. Show that the �xed-point method
g(x) = x− mf(x)

f ′(x)has g′(p) = 0, if p is a zero of f of multipli
itym.SOLUTION: If f has a zero of multipli
itym at p, then a fun
tion q exists with
f(x) = (x− p)mq(x), where lim

x→p
q(x) 6= 0.Sin
e

f ′(x) = m(x− p)m−1q(x) + (x − p)mq′(x),we have
g(x) = x− mf(x)

f ′(x)
= x− m(x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)
,whi
h redu
es to

g(x) = x− m(x− p)q(x)

mq(x) + (x− p)q′(x)
.Differentiating this expression and evaluating at x = p gives

g′(p) = 1− mq(p)[mq(p)]

[mq(p)]2
= 0.If f ′′′ is 
ontinuous, Theorem 2.9 implies that this sequen
e produ
es quadrati
 
onvergen
e on
e weare 
lose enough to the solution p.12. Suppose that f hasm 
ontinuous derivatives. Show that f has a zero of multipli
itym at p if andonly if

0 = f(p) = f ′(p) = · · · = f (m−1)(p), but f (m)(p) 6= 0.



30 Exer
ise Set 2.4SOLUTION: If f has a zero of multipli
itym at p, then f 
an be written as
f(x) = (x− p)mq(x), for x 6= p, where lim

x→p
q(x) 6= 0.Thus

f ′(x) = m(x− p)m−1q(x) + (x− p)mq′(x)and f ′(p) = 0. Also
f ′′(x) = m(m− 1)(x− p)m−2q(x) + 2m(x− p)m−1q′(x) + (x − p)mq′′(x)and f ′′(p) = 0.In general, for k ≤ m,

f (k)(x) =

k
∑

j=0

(

k

j

)

dj(x− p)m

dxj
q(k−j)(x)

=

k
∑

j=0

(

k

j

)

m(m− 1)· · ·(m− j + 1)(x− p)m−jq(k−j)(x).Thus, for 0 ≤ k ≤ m− 1, we have f (k)(p) = 0, but
f (m)(p) = m! lim

x→p
q(x) 6= 0.Conversely, suppose that f(p) = f ′(p) = . . . = f (m−1)(p) = 0 and f (m)(p) 6= 0. Consider the

(m− 1)th Taylor polynomial of f expanded about p :
f(x) =f(p) + f ′(p)(x − p) + . . .+

f (m−1)(p)(x− p)m−1

(m− 1)!
+
f (m)(ξ(x))(x − p)m

m!

=(x− p)m
f (m)(ξ(x))

m!
,where ξ(x) is between x and p. Sin
e f (m) is 
ontinuous, let

q(x) =
f (m)(ξ(x))

m!
.Then f(x) = (x− p)mq(x) and

lim
x→p

q(x) =
f (m)(p)

m!
6= 0.So p is a zero of multipli
itym.14. Show that the Se
ant method 
onverges of order α, where α =

(

1 +
√
5
)

/2, the golden ratio.SOLUTION: Let en = pn − p. If
lim
n→∞

|en+1|
|en|α

= λ > 0,then for suf�
iently large values of n, |en+1| ≈ λ|en|α. Thus
|en| ≈ λ|en−1|α and |en−1| ≈ λ−1/α|en|1/α.



Solutions of Equations of One Variable 31The hypothesis that for some 
onstant C and suf�
iently large n we have
|pn+1 − p| ≈ C|pn − p| |pn−1 − p|, gives

λ|en|α ≈ C|en|λ−1/α|en|1/α, so |en|α ≈ Cλ−1/α−1|en|1+1/α.Sin
e the powers of |en| must agree,
α = 1 + 1/α and α =

1 +
√
5

2
.This number, the Golden Ratio, appears in numerous situations in mathemati
s and in art.Exer
ise Set 2.5, page 902. Apply Newton's method to approximate a root of

f(x) = e6x + 3(ln 2)2e2x − ln 8e4x − (ln 2)3 = 0.Generate terms until |pn+1 − pn| < 0.0002, and 
onstru
t the Aitken's∆2 sequen
e {p̂n}.SOLUTION: Applying Newton's method with p0 = 0 requires �nding p16 = −0.182888. For theAitken's∆2 sequen
e, we have suf�
ient a

ura
y with p̂6 = −0.183387.Newton's method fails to
onverge quadrati
ally be
ause there is a multiple root.3. Let g(x) = cos(x− 1) and p(0)0 = 2. Use Steffensen's method to �nd p(1)0 .SOLUTION: With g(x) = cos(x− 1) and p(0)0 = 2, we have
p
(0)
1 = g

(

p
(0)
0

)

= cos(2− 1) = cos 1 = 0.5403023and
p
(0)
2 = g

(

p
(0)
1

)

= cos(0.5403023− 1) = 0.8961867.Thus
p
(1)
0 = p

(0)
0 −

(

p
(0)
1 − p

(0)
0

)2

p
(0)
2 − 2p

(0)
1 − 2p

(0)
1 + p

(0)
0

= 2− (0.5403023− 2)2

0.8961867− 2(0.5403023)+ 2
= 2− 1.173573 = 0.826427.5. Steffensen's method is applied to a fun
tion g(x) using p(0)0 = 1 and p(0)2 = 3 to obtain p(1)0 = 0.75.What 
ould p(0)1 be?SOLUTION: Steffensen's method uses the formula

p
(0)
1 = p

(0)
0 −

(

p
(0)
1 − p

(0)
0

)2

p
(0)
2 − 2p

(0)
1 + p

(0)
0

.



32 Exer
ise Set 2.5Substituting for p(0)0 , p(0)2 , and p(1)0 gives
0.75 = 1−

(

p
(0)
1 − 1

)2

3− 2p
(0)
1 + 1

, that is, 0.25 =

(

p
(0)
1 − 1

)2

4− 2p
(0)
1

.Thus
1− 1

2
p
(0)
1 =

(

p
(0)
1

)2

− 2p
(0)
1 + 1, so 0 =

(

p
(0)
1

)2

− 1.5p
(0)
1 ,and p(0)1 = 1.5 or p(0)1 = 0.11. b. Use Steffensen's method to approximate the solution to within 10−5 of x = 0.5(sinx+ cosx),where g(x) = 0.5(sinx+ cosx).SOLUTION: With g(x) = 0.5(sinx+ cosx), we have

p
(0)
0 = 0, p

(0)
1 = g(0) = 0.5,

p
(0)
2 = g(0.5) = 0.5(sin 0.5 + cos 0.5) = 0.678504051,

p
(1)
0 = p

(0)
0 −

(

p
(0)
1 − p

(0)
0

)2

p
(0)
2 − 2p

(0)
1 + p

(0)
0

= 0.777614774,

p
(1)
1 = g

(

p
(1)
0

)

= 0.707085363,

p
(1)
2 = g

(

p
(1)
1

)

= 0.704939584,

p
(2)
0 = p

(1)
0 −

(

p
(1)
1 − p

(1)
0

)2

p
(1)
2 − 2p

(1)
1 + p

(1)
0

= 0.704872252,

p
(2)
1 = g

(

p
(2)
0

)

= 0.704815431,

p
(2)
2 = g

(

p
(2)
1

)

= 0.704812197,

p
(3)
0 = p

(2)
0 =

(

p
(2)
1 − p

(2)
0

)2

p
(2)
2 − 2p

(2)
1 + p

(2)
0

= 0.704812002,

p
(3)
1 = g

(

p
(3)
0

)

= 0.704812002,and
p
(3)
2 = g

(

p
(3)
1

)

= 0.704812197.Sin
e p(3)2 , p(3)1 , and p(3)0 all agree to within 10−5, we a

ept p(3)2 = 0.704812197 as an answer that isa

urate to within 10−5.14. a. Show that a sequen
e {pn} that 
onverges to p with order α > 1 
onverges superlinearly to p.b. Show that the sequen
e pn =
1

nn

onverges superlinearly to 0, but does not 
onverge of order α forany α > 1.SOLUTION: Sin
e {pn} 
onverges to p with order α > 1, a positive 
onstant λ exists with
λ = lim

n→∞
|pn+1 − p|
|pn − p|α .
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e
lim
n→∞

∣

∣

∣

∣

pn+1 − p

pn − p

∣

∣

∣

∣

= lim
n→∞

|pn+1 − p|
|pn − p|α · |pn − p|α−1 = λ · 0 = 0 and lim

n→∞
pn+1 − p

pn − p
= 0.This implies that {pn} that 
onverges superlinearly to p.b. The sequen
e 
onverges pn =

1

nn
superlinearly to zero be
ause

lim
n→∞

1/(n+ 1)(n+1)

1/nn
= lim

n→∞
nn

(n+ 1)(n+1)

= lim
n→∞

(

n

n+ 1

)n
1

n+ 1

= lim
n→∞

(

1

(1 + 1/n)n

)

1

n+ 1
=

1

e
· 0 = 0.However, for α > 1, we have

lim
n→∞

1/(n+ 1)(n+1)

(1/nn)α
= lim

n→∞
nαn

(n+ 1)(n+1)

= lim
n→∞

(

n

n+ 1

)n
n(α−1)n

n+ 1

= lim
n→∞

(

1

(1 + 1/n)n

)

lim
n→∞

n(α−1)n

n+ 1
=

1

e
· ∞ = ∞.So the sequen
e does not 
onverge of order α for any α > 1.17. Let Pn(x) be the nth Taylor polynomial for f(x) = ex expanded about x0 = 0.a. For �xed x, show that pn = Pn(x) satis�es the hypotheses of Theorem 2.14.b. Let x = 1, and use Aitken's∆2 method to generate the sequen
e p̂0, p̂1, . . . , p̂8.
. Does Aitken's ∆2 method a

elerate the 
onvergen
e in this situation?SOLUTION: a. Sin
e

pn = Pn(x) =

n
∑

k=0

1

k!
xk,we have

pn − p = Pn(x) − ex =
−eξ

(n+ 1)!
xn+1,where ξ is between 0 and x. Thus, pn − p 6= 0, for all n ≥ 0. Further,

pn+1 − p

pn − p
=

−eξ1

(n+2)!x
n+2

−eξ

(n+1)!x
n+1

=
e(ξ1−ξ)x

n+ 2
,where ξ1 is between 0 and 1. Thus

λ = lim
n→∞

e(ξ1−ξ)x

n+ 2
= 0 < 1.



34 Exer
ise Set 2.6b. The sequen
e has the terms shown in the following tables.
n 0 1 2 3 4 5 6

pn 1 2 2.5 2.6 2.7083 2.716 2.71805
p̂n 3 2.75 2.72 2.71875 2.7183 2.7182870 2.7182823

n 7 8 9 10

pn 2.7182539 2.7182787 2.7182815 2.7182818
p̂n 2.7182818 2.7182818
. Aitken's∆2 method gives quite an improvement for this problem. For example, p̂6 is a

urate towithin 5× 10−7. We need p10 to have this a

ura
y.Exer
ise Set 2.6, page 1002. b. Use Newton's method to approximate, to within 10−5, the real zeros of

P (x) = x4 − 2x3 − 12x2 + 16x− 40.Then redu
e the polynomial to lower degree, and determine any 
omplex zeros.SOLUTION: Applying Newton's method with p0 = 1 gives the suf�
iently a

urate approximation
p7 = −3.548233. When p0 = 4, we �nd another zero to be p5 = 4.381113. If we divide P (x) by

(x+ 3.548233)(x− 4.381113) = x2 − 0.832880x− 15.54521,we �nd that
P (x) ≈

(

x2 − 0.832880x− 15.54521
)(

x2 − 1.16712x+ 2.57315
)

.The 
omplex roots of the quadrati
 on the right 
an be found by the quadrati
 formula and areapproximately 0.58356± 1.49419i.4. b. Use Müller's method to �nd the real and 
omplex zeros of
P (x) = x4 − 2x3 − 12x2 + 16x− 40.SOLUTION: The following table lists the initial approximation and the roots. The �rst initialapproximation was used be
ause f(0) = −40, f(1) = −37, and f(2) = −56 implies that there is aminimum in [0, 2]. This is 
on�rmed by the 
omplex roots that are generated.The se
ond initial approximations are used to �nd the real root that is known to lie between 4 and 5,due to the fa
t that f(4) = −40 and f(5) = 115.



Solutions of Equations of One Variable 35The third initial approximations are used to �nd the real root that is known to lie between −3 and−4,sin
e f(−3) = −61 and f(−4) = 88.

p0 p1 p2 Approximated Roots Complex Conjugate Root
0 1 2 p7 = 0.583560− 1.494188i 0.583560+ 1.494188i
2 3 4 p6 = 4.381113

−2 −3 −4 p5 = −3.5482335. b. Find the zeros and 
riti
al points of
f(x) = x4 − 2x3 − 5x2 + 12x− 5,and use this information to sket
h the graph of f .SOLUTION: There are at most four real zeros of f and f(0) < 0, f(1) > 0, and f(2) < 0. This,together with the fa
t that limx→∞ f(x) = ∞ and limx→−∞ f(x) = ∞, implies that these zeros liein the intervals (−∞, 0), (0, 1), (1, 2), and (2,∞). Applying Newton's method for various initialapproximations in these intervals gives the approximate zeros: 0.5798, 1.521, 2.332, and −2.432. To�nd the 
riti
al points, we need the zeros of
f ′(x) = 4x3 − 6x2 − 10x+ 12.Sin
e x = 1 is quite easily seen to be a zero of f ′(x), the 
ubi
 equation 
an be redu
ed to a quadrati
to �nd the other two zeros: 2 and −1.5.Sin
e the quadrati
 formula applied to
0 = f ′′(x) = 12x2 − 12x− 10gives x = 0.5±

(√
39/6

), we also have the points of in�e
tion.A sket
h of the graph of f is given below.
x 

y 

220

21

22 

23

20

1 3

60

2

40

9. Find a solution, a

urate to within 10−4, to the problem
600x4 − 550x3 + 200x2 − 20x− 1 = 0, for 0.1 ≤ x ≤ 1by using the various methods in this 
hapter.



36 Exer
ise Set 2.6SOLUTION:a. Bise
tion method: For p0 = 0.1 and p1 = 1, we have p14 = 0.23233.b. Newton's method: For p0 = 0.55, we have p6 = 0.23235.
. Se
ant method: For p0 = 0.1 and p1 = 1, we have p8 = 0.23235.d.Method of False Position: For p0 = 0.1 and p1 = 1, we have p88 = 0.23025.e.Müller's method: For p0 = 0, p1 = 0.25, and p2 = 1, we have p6 = 0.23235.Noti
e that the method of False Position for this problem was 
onsiderably less effe
tive than both theSe
ant method and the Bise
tion method.11. A 
an in the shape of a right 
ir
ular 
ylinder must have a volume of 1000 
m3. To form seals, thetop and bottom must have a radius 0.25 
m more than the radius and the material for the side must be
0.25 
m longer than the 
ir
umferen
e of the 
an. Minimize the amount of material that is required.SOLUTION: Sin
e the volume is given by

V = 1000 = πr2h,we have h = 1000/
(

πr2
). The amount of material required for the top of the 
an is π(r + 0.25)2,and a similar amount is needed for the bottom. To 
onstru
t the side of the 
an, the material needed is

(2πr + 0.25)h. The total amount of materialM(r) is given by
M(r) = 2π(r + 0.25)2 + (2πr + 0.25)h = 2π(r + 0.25)2 + 2000/r+ 250/πr2.Thus

M ′(r) = 4π(r + 0.25)− 2000/r2 − 500/(πr3).SolvingM ′(r) = 0 for r gives r ≈ 5.363858. EvaluatingM(r) at this value of r gives the minimalmaterial needed to 
onstru
t the 
an:
M(5.363858) ≈ 573.649 
m2.12. Leonardo of Pisa (Fibona

i) found the base 60 approximation

1 + 22

(

1

60

)

+ 7

(

1

60

)2

+ 42

(

1

60

)3

+ 33

(

1

60

)4

+ 4

(

1

60

)5

+ 40

(

1

60

)6as a root of the equation
x3 + 2x2 + 10x = 20.How a

urate was his approximation?SOLUTION: The de
imal equivalent of Fibona

i's base 60 approximation is 1.3688081078532, andNewton's Method gives 1.36880810782137with a toleran
e of 10−16. So Fibona

i's answer was
orre
t to within 3.2× 10−11. This is the most a

urate approximation to an irrational root of a 
ubi
polynomial that is known to exist, at least in Europe, before the sixteenth 
entury. Fibona

i probablylearned the te
hnique for approximating this root from the writings of the great Persian poet andmathemati
ian Omar Khayyám.
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